Buoyancy-driven flow in annular space from two circular cylinders in tandem arrangement

  • Houssem Laidoudi Laboratoire des Sciences et Ingénierie Maritime (LSIM), Faculty of Mechanical engineering, USTO-MB, BP 1505, El -Menaouer, Oran 31000, Algeria
Keywords: buoyancy-driven flown, natural convection, annular space, two circular cylinders, steady flow, heat transfer;, incompressible fluid

Abstract

The two-dimensional numerical investigation is well accomplished to understand the behavior of buoyancy-driven flow in closed annular space. The studied domain consists of a pair of equal-sized circular cylinders in tandem arrangement confined in a circular enclosure which is filled with incompressible Newtonian fluid. The inner cylinders are identical in size and they are supposed to be hot with constant temperature, the outer circular enclosure is kept cold with a constant temperature. The descriptive governing equations of continuity, momentum and energy for the present problem are solved numerically using the finite-volume method. The present research studies the effects of thermal buoyancy strength, the thermophysical characteristics of the fluid, and the size of the inner cylinders on the flow patterns inside the circular domain and rate of heat transfer exchanging between the inner cylinders and fluid flow. The results showed that the studied governing parameters significantly affect the fluid flow and heat transfer rate. An increase in the diameter of inner cylinders makes the effect of buoyancy strength on fluid flow and heat transfer negligible for all values of thermo-physical parameters. Also, the average Nusselt number of each inner cylinder is computed and plotted for industrial applications.

References

T. Zhang, Q.Tang, H. Lu, S. Wang, L. Sun: J RSC Adv, 5 (2015) 12178-12185.

Crossref

K. N. Volkova, A. G. Karpenko: J Engineering Physics Thermophysics, 87 (2014) 929-235.

Crossref

M. Venkatachalappa, M. Sankar and A. A. Natarajan: Acta Mechanica, 147(2001) 173-196.

Crossref

S. Touzani, A. Idrissi, A. Cheddadi, M. T. Ouazzani: J Engineering Physics Thermophysics, 92 (2019) 1064-1071.

Crossref

G.A. Sheikhzadeh, M. Arbaban, M. A. Mehrabian: Heat Mass Transfer, 49 (2013) 391-403.

Crossref

N. Scurtu, B. Futterer, Ch. Egbers: Journal of Physics: Conference Series, 137 (2008) 012017.

Crossref

S. A. Nada: Heat Mass Transfer, 44 (2008) 929-936.

Crossref

A. Mezrhab, M. A. Moussaoui, H. Naji: J. Phys. D: Appl Phys, 41 (2008) 115502 (17pp).

Crossref

F. Mebarek-Oudina, R. Bessaïh: Thermophysics and Aeromechanics, 26 (2019) 325-334.

Crossref

N. Kozlov: Fluid Dyn Res, 50 (2018) 051402 (12pp).

Crossref

Eldesouki Ibrahim Eid: Heat Mass Transfer, 47 (2011) 81-91.

Crossref

K.F.U. Ahmed, R. Nasrin, M. Elias: J Naval Architecture Marine Engineering, 15 (2018) 37-52.

Crossref

A.K. Hussein: Comm Heat Mass Transfer, 46 (2013) 126-133.

Crossref

M. H. Matin, W. A. Khan: Comm Heat Mass Transfer, 43 (2013) 112-121.

Crossref

E. Abu-Nada, Z. Masoud, A. Hijazi: Comm Heat Mass Transfer, 35 (2008) 657-665.

Crossref

T. Tayebi, A.J. Chamkha, M. Djezzar, A. Bouzerzour: J Thermal Science Engineering Applications, 9 (2017) 011010-1.

Crossref

D. Nasiri, A.A. Dehghan, M.R. Hadian: Heat Mass Transfer, 53 (2016) 799-811.

Crossref

W. El-Maghlany, Mohamed Abo Elazm, Ali Shahata, Yehia Eldrainy: Thermal Science, 20 (2016) 1597-1608.

Crossref

GH.R. Kefayati, H. Tang: Heat Mass Transfer, 120 (2018) 731-750.

Crossref

A. M. Aly: Taiwan Institute of Chemical Engineers 70 (2017) 88-103.

Crossref

S. Pandey, Y. G. Park, M. Y. Ha: Heat Mass Transfer, 138 (2019) 762-795.

Crossref

K. Ragui, A. Boutra, Y. K. Benkahla: Letters of Chemistry, Physics Astronomy, 64 (2018) 144-158.

Crossref

T.H. Kuehn, R.J.Goldstein: J Fluid Mechanics, 74 (1976) 695-719.

Crossref

Published
2020-04-16
Section
Modeling and simulation in metallurgical and materials engineering