Intensification of liquid steel active flow volume in one-strand tundish using a modified ladle shroud

  • Michał Bartosiewicz Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Metallurgy and Metals Technology, Armii Krajowej 19 ave, 42-200 Częstochowa, Poland
  • Adam Cwudziński Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Metallurgy and Metals Technology, Armii Krajowej 19 ave, 42-200 Częstochowa, Poland
Keywords: continuous steel casting, tundish, ladle shroud, numerical simulations, physical simulations, turbulence models

Abstract

This work presents the numerical and physical simulation results of the liquid steel flow in the one-strand tundish. The results obtained during the numerical simulations and the water modeling results were compared to each other. Six types of turbulence models were tested. Among tested turbulence models the BSL k-ω was turned out the best correlating with the results from the laboratory experiments. Besides, the ladle shroud modification was proposed by the authors and the influence of the modified ladle shroud immersion depth in the liquid steel on the hydrodynamic structure in the tundish was checked. The ladle shroud modification depended on the expansion, narrowing, and re-expansion of the liquid steel feed stream. The four tundish variants with the four different ladle shroud immersion depths (at 0.1, 0.2, 0.3 and 0.4 m) in the liquid steel were tested. The liquid steel flow volumes were calculated and according to the generated active flow volume, the most beneficial research case was indicated. The tundish variant with the ladle shroud immersion depth of 0.3 m in the liquid steel was characterized by the lowest stagnant flow volume. The numerical simulations were performed by using the Ansys-Fluent computer program.

References

J. Zhang, J. Li, Y. Yan, Z. Chen, S. Yang, J. Zhao, Z. Jiang: Metall Mater Trans B, 47 (2016) 495-507.

Crossref

J. Zhang, S. Yang, M. Li, Z. Chen, Z. Jiang, J. Li: Ironmak Steelmak, 44 (2017) 732-737.

Crossref

S. Garcia-Hernandez, R.D. Morales, J.D.J. Barreto, I. Calderon-Ramos, E. Gutierrez: Steel Res Int, 87 (2016)1154-1167.

Crossref

G. Solorio-Diaz, R.D. Morales, A. Ramos-Banderas: Int J Heat Mass Tran, 48 (2005) 3574-3590.

Crossref

D. Chatterjee: Adv Mat Res, 585 (2012) 359-363.

Crossref

D. Chatterjee: Am J Min Metall, 4 (2017) 1-31.

Crossref

D. Chatterjee: J Achiev Mater Manuf Eng, 81 (2017) 18-34.

Crossref

L. Zhong, B. Li, Y. Zhu, R. Wang, R. Wang, X. Zhang: ISIJ Int, 47 (2007) 88-94.

Crossref

A. Tripathi, S.K. Ajmani: ISIJ Int, 51 (2011) 1647-1656.

Crossref

D. Mazumdar: Trans Indian Inst Met, 66 (2013) 597-610.

Crossref

A. Cwudziński: Steel Res Int, 85 (2013) 902-917.

Crossref

M. Bartosiewicz, A. Cwudziński: Hutnik-Wiad Hut, 84 (2017) 483-488 (in Polish)

A. Kumar, D. Mazumdar, S.C. Koria: ISIJ Int, 48 (2008) 38-47.

Crossref

F.R. Menter: AIAA Journal, 32 (1994) 1598-1605.

Crossref

M.I.H. Siddiqui, P.K. Jha: ISIJ Int, 54 (2014) 2578-2587.

Crossref

A. Asad, C. Kratzsch, R. Schwarze: Steel Res Int, 87 (2016) 181-190.

Crossref

G. Solorio-Diaz, R.D. Morales, J. Palafax-Ramos, L. Garcia-Demedices, A. Ramos-Banderas: ISIJ Int, 44 (2004) 1024-1032.

Crossref

A. Cwudziński: Met Res Tech, 111 (2014) 45-55.

Crossref

G. Wang, M. Yun, C. Zhang, G. Xiao: ISIJ Int, 55 (2015) 984-992.

Crossref

Y. Sahai, T. Emi: Tundish technology for clean steel production, first ed., World Scientific Publishing Co. Pte. Ltd., Singapore, 2007.

Crossref

J. Jowsa, A. Cwudziński: Arch Metall Mater, 55 (2010) 477-488.

LINK

A. Kumar, S.C. Koria, D. Mazumdar: ISIJ Int, 44 (2004) 1334-1341.

Crossref

T. Merder, J. Pieprzyca: Steel Res Int, 83 (2012) 1029-1038.

Crossref

M. Warzecha, T. Merder, H. Pfeifer, J. Pieprzyca: Steel Res Int, 81 (2010) 987-993.

Crossref

Published
2020-04-16
Section
Modeling and simulation in metallurgical and materials engineering