Matrix design of a novel ductile cast iron modified by W and Al: A comparison between thermodynamic modeling and experimental data

  • Gülşah Aktaş Çelik Kocaeli University
  • Maria-Ioanna T. Tzini University of Thessaly, Department of Mechanical Engineering, Volos, Greece
  • Şeyda Polat Kocaeli University, Department of Metallurgical and Materials Engineering, Kocaeli, Turkey
  • Şaban Hakan Atapek Kocaeli University, Department of Metallurgical and Materials Engineering, Kocaeli, Turkey
  • Gregory N. Haidemenopoulos University of Thessaly, Department of Mechanical Engineering, Volos, Greece; Khalifa University of Science & Technology, Department of Mechanical Engineering, UAE
Keywords: alloy design, Thermo-Calc, ductile cast iron, microstructure, characterization

Abstract

In high-temperature applications of ferrous materials, as in the case of exhaust manifolds, high thermal and mechanical stability are required. Stainless steels and Ni-resist alloys having austenitic matrices are good candidates to meet these requirements at elevated temperatures; however, they are expensive materials and present difficulties in casting. Ferritic ductile cast irons, like the commercial SiMo alloy, are comparatively cheaper materials with better castability but they cannot be used above approximately 800 °C. Thus, to meet the requirements with low-cost materials having improved high-temperature properties, new alloys must be developed by ferrite forming elements having the potential to increase equilibrium temperature. In this study, initially, a novel ductile cast iron matrix was designed using 1 W and 0-4 Al wt.-% and their phases stable at room temperature, transformation temperatures, solidification sequences and thermal expansivity values were determined using thermodynamic calculations with Thermo-Calc software. Computational studies revealed that (i) designed alloy matrices had graphite and M6C type carbides embedded in a ferritic matrix at room temperature as expected, (ii) A1 temperature increased as aluminum content increased. The obtained values were all above that of commercial SiMo alloy, (iii) the detrimental effect of increased aluminum addition on graphite content, and thermal expansivity was observed. Secondly, microstructural and thermal characterizations of cast alloys were performed for validation – the obtained data were in good agreement with the thermodynamic calculations.

References

A. A. Partoaa, M. Abdolzadeh, M. Rezaeizadeh: J Cent South Univ, 24 (2017) 546−559.

Crossref

G.M. Castro Güizaa, W. Hormaza, A.R. Galvis E, L.M. Méndez Moreno: Eng Fail Anal, 82 (2017) 138-148.

Crossref

Y. Zhang, M. Li, L. A. GodlewskI, J. W. Zindel, Q. Feng: Metall Mater Trans A, 47A (2016) 3289-3294.

Crossref

M. Ekström, S.Jonsson: Mater Sci Eng, A 616 (2014) 78-87.

Crossref

M. Ekström, P. Szakalos, S. Jonsson: Oxid Met, 80 (2013) 455-466.

Crossref

F. Tholence, M. Norell: Oxid Met, 69 (2008) 37-62.

Crossref

J. P. Shingledecker, P. J. Maziasz, N. D. Evansa, M. J. Pollard: Int J Press Vessels Pip, 84 (2007) 21-28.

Crossref

Y. Zhang, M. Li, L. A. Godlewski, J. W. Zindel, Q. Feng: Mater Charact, 139 (2018) 19-29.

Crossref

H. Inoue, T. Koseki: Acta Mater, 124 (2017) 430-436.

Crossref

M. Górny: Arch Foundry Eng, 8:3 (2008) 59-64.

Link

D. Holmgren, A. Diószegi, I. L. Svensson: Int J Cast Met Res, 20:1 (2007) 30-40.

Crossref

Z.J. Ma, D. Tao, Z. Yang, Y.C. Guo, J.P. Li, M.X. Liang, L. T. Li Yeung: Materials and Design, 93 (2016) 418-422.

Crossref

X Wu, G. Quan, R. Macneil, Z. Zhang, X. Liu, C. Sloss: Metall Mater Trans A, 46:6 (2015) 2530-2543.

Crossref

L. M. Åberg, C. Hartung: Trans Indian Inst Met: 65:6 (2012) 633-636.

Crossref

G. E. Totten, Steel Heat Treatment, second ed. Portland, Longman, New York, 2006.

Crossref

A. I. Al-Ghonamy, M. Ramadan, N. Fathy, K. M. Hafez, A. A. El-Wakil: Int J Civil & Env Eng IJCEE-IJENS, 10:03 (2010) 1-5.

Crossref

H. Nakayama, B.-R. Zhao, N. Furusato, S. Yamada, T. Nishi, H. Ohta: Mater Trans, 59: 3 (2018) 412-419.

Crossref

T. Sjögren, I. L. Svensson: Metall Mater Trans A, 38:4 (2007) 840-847.

Crossref

R. González-Martíneza, U. de la Torrea, J. Lacazeb, J. Sertuch: Mater Sci Eng A, 712 (2018) 794-802.

Crossref

N. Haghdadi, B. Bazaz, H.R. Erfanian-Naziftoosi, and A.R. Kiani-Rashid: Int J Miner Metall Mater, 19:9 (2012) 812-820.

Crossref

A. Shayesteh-Zeraati, H. Naser-Zoshki, A.R. Kiani-Rashid: J Alloys Compd, 500 (2010) 129-133.

Crossref

M.S. Soiński, A. Jakubus, G. Stradomski: Arch Foundry Eng, 13:2 (2013) 163-168.

Crossref

M. Górny and M. Kawalec: J Mater Eng Perform, 22:5 (2013) 1519-1524.

Crossref

T. N. F. Souza, R. A. P. S. Nogueira, F. J. S. Franco, M. T. P. Aguilar, P. R. Cetlin: Mat Res, 17:5 (2014) 1167-1172.

Crossref

M. M. Ibrahim, A. Nofal, M.M. Mourad: Metall and Mater Trans B, 48:2 (2017) 1149-1157.

Crossref

A. Alhussein, M. Risbet, A. Bastien, J. P. Chobaut, D. Balloy, J. Favergeon: Mater Sci Eng A, 605 (2014) 222-228.

Crossref

D. Li: Metall and Mater Trans B, 49B (2018) 858-859.

Crossref

P. Matteis, G. Scavino, A. Castello, D. Firrao: Procedia Mater Sci, 3 (2014) 2154 - 2159.

Crossref

B. Cygan, M. Stawarz, J. Jezierski: Arch Foundry Eng, 18-4 (2018) 103-109.

Crossref

Published
2020-04-16
Section
Modeling and simulation in metallurgical and materials engineering