Air and Vacuum Annealing Effect on the Highly Conducting and Transparent Properties of the Undoped Zinc Oxide Thin Films Prepared by DC Magnetron Sputtering

Authors

  • Lamia Radjehi LASPI2A Laboratoire des Structures, Propriétés et Interactions Inter Atomiques, Khenchela University, Khenchela 40000, Algeria Matter Sciences Department, Abbes Laghrour-Khenchela University, P.O 1252, 40004 Khenchela, Algeria
  • Linda Aissani Matter Sciences Department, Abbes Laghrour-Khenchela University, P.O 1252, 40004 Khenchela, Algeria Active Components and Materials Laboratory, Larbi BEN M’HIDI University, 04000 Oum El Bouaghi, Algeria
  • Abdelkader Djelloul LASPI2A Laboratoire des Structures, Propriétés et Interactions Inter Atomiques, Khenchela University, Khenchela 40000, Algeria Matter Sciences Department, Abbes Laghrour-Khenchela University, P.O 1252, 40004 Khenchela, Algeria
  • Abdenour Saoudi Department of Mechanical Engineering, and Advanced Materials Laboratory (ISMA), Abbes Laghrour University, Khenchela 40000, Algeria https://orcid.org/0000-0002-9845-0290
  • Salim Lamri Laboratoire des Systèmes Mécaniques et d’Ingénierie Simultanée, Institut Charles Delaunay, CNRS, Université de Technologie de Troyes (UTT), Antenne de Nogent, Pôle technologique de Haute-Champagne, 52800 Nogent, France
  • Komla Nomenyo Light, Nanomaterials, Nanotechnologies (L2N, former LNIO), Institut Charles Delaunay, CNRS, Université de Technologie de Troyes (UTT), 12 Rue Marie Curie, CS 42060, 10004 Troyes, France
  • Gilles Lerondel Light, Nanomaterials, Nanotechnologies (L2N, former LNIO), Institut Charles Delaunay, CNRS, Université de Technologie de Troyes (UTT), 12 Rue Marie Curie, CS 42060, 10004 Troyes, France
  • Frédéric Sanchette Laboratoire des Systèmes Mécaniques et d’Ingénierie Simultanée, Institut Charles Delaunay, CNRS, Université de Technologie de Troyes (UTT), Antenne de Nogent, Pôle technologique de Haute-Champagne, 52800 Nogent, France Nogent International Center for CVD Innovation, LRC CEA-ICD LASMIS, UTT, Antenne de Nogent-52, Pôle Technologique de Haute-Champagne, 52800 Nogent, France

DOI:

https://doi.org/10.56801/MME889

Abstract

In this study, we aim to investigate the effect of zinc interstitials (Zni) and oxygen vacancies (VO) on the ZnO electrical conductivity. ZnO films were synthesized via DC magnetron sputtering process using pure Zn target in gases mixture of Ar/O2 = 80/17.5 (sccm). In order to improve the optical and electrical prosperities, the obtained films were subjected to air and vacuum annealing treatment. Several techniques such as field emission scanning electron microscopy (FESEM), Grazing Incidence X-ray Diffraction (GIXRD), Raman spectroscopy, photoluminescence spectroscopy (PL) and UV-visible were used to study the influence of heat treatment on structural and physical properties of ZnO films. Electrical conductivity of ZnO thin films was determined by measuring the sheet resistance and thickness of the films.  XRD results confirm the synthesis of annealed ZnO films of the hexagonal structure with a preferential orientation along the (002) plane. The average crystallite size is altered between 22.6 to 28.4 nm dependent on the plan orientation of the ZnO film. Morphology and crystallinity of the ZnO structure could efficiently control the transmittance, electrical resistivity and optical band gap. As deposited ZnO film showed a lower electrical resistivity of 2.72×10-3 Ωcm due to the Zn-rich conditions. Under vacuum annealing, a combination of low resistivity (1.17×10-2 Ωcm) and better optical transmittance (87 %) are obtained. ZnO films developed in this study with high transmittance and low resistivity and good electro-optical quality supports their use in transparent and conductive electrode applications. The plan presentation was visualized using Vesta, with the lattice parameter set as follows: a = b = 3.249 Å; c = 5.207 Å; α = β = 90°; γ = 120°. Based on the construction and optimization of primitive cells, the supercells were constructed and then optimized. Finally, (002) and (103) planes were cut and the planar supercell structure was constructed. In order to make a plane representation for the solid bulk with 10 Å of thickness.

References

Shelke, V., M. Bhole, and D. Patil, Open air annealing effect on the electrical and optical properties of tin doped ZnO nanostructure. Solid state sciences, 2012. 14(6): p. 705-710.

Crossreff

Manivasaham, A., K. Ravichandran, and K. Subha, Light intensity effects on the sensitivity of ZnO: Cr gas sensor. Surface Engineering, 2017. 33(11): p. 866-876.

Crossreff

Radjehi, L., et al., Oxygen effect on structural and optical properties of zinc oxide. Surface Engineering, 2019. 35(6): p. 520-526.

Crossreff

Oh, S. and J. Kim, Correlation between the Morphology of ZnO Layers and the Electroluminescence of Quantum Dot Light-Emitting Diodes. Applied Sciences, 2019. 9(21): p. 4539.

Crossreff

Cai, P., et al., Enhancement of conductivity and transmittance of ZnO films by post hydrogen plasma treatment. Journal of Applied Physics, 2009. 105(8): p. 083713.

Crossreff

Janotti, A. and C.G. Van de Walle, Native point defects in ZnO. Physical Review B, 2007. 76(16): p. 165202.

Crossreff

Kim, D.-H., G.-W. Lee, and Y.-C. Kim, Interaction of zinc interstitial with oxygen vacancy in zinc oxide: An origin of n-type doping. Solid state communications, 2012. 152(18): p. 1711-1714.

Crossreff

Ahn, C.H., et al., A comparative analysis of deep level emission in ZnO layers deposited by various methods. Journal of Applied Physics, 2009. 105(1): p. 013502.

Crossreff

Li, J., et al., Effects of rapid thermal annealing in different ambients on structural, electrical, and optical properties of ZnO thin films by sol-gel method. Journal of electroceramics, 2011. 26: p. 84-89.

Crossreff

Benramache, S., et al., Influence of growth time on crystalline structure, conductivity and optical properties of ZnO thin films. Journal of Semiconductors, 2013. 34(2): p. 023001.

Crossreff

Tsuji, T. and M. Hirohashi, Influence of oxygen partial pressure on transparency and conductivity of RF sputtered Al-doped ZnO thin films. Applied Surface Science, 2000. 157(1-2): p. 47-51.

Crossreff

Mathew, J.P., G. Varghese, and J. Mathew, Structural and optical properties of Ni: ZnO thin films-effect of annealing and doping concentration. Sop Trans. Appl. Phys, 2014. 1: p. 27-36.

Crossreff

Hoggas, K., et al., Structural, microstructural, and optical properties of Zn 1− x Mg x O thin films grown onto glass substrate by ultrasonic spray pyrolysis. Applied Physics A, 2015. 120: p. 745-755.

Crossreff

Hutson, A.R., Hall effect studies of doped zinc oxide single crystals. Physical review, 1957. 108(2): p. 222.

Crossreff

Li, W., et al., Effects of substrate temperature on the properties of facing-target sputtered Al-doped ZnO films. Solar energy materials and solar cells, 2007. 91(8): p. 659-663.

Crossreff

Minami, T., Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Films, 2008. 516(17): p. 5822-5828.

Crossreff

K.E. Knutsen, A. Galeckas, A. Zubiaga, F. Tuomisto, G. C. Farlow, B. G. Svensson, A. Y. Kuznetsov: Zinc vacancy and oxygen interstitial in ZnO revealed by sequential annealing and electron irradiation. Physical Review B, 2012. 86 :p.121-203.

Crossreff

Ellmer, K., Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties. Journal of Physics D: Applied Physics, 2000. 33(4): p. R17.

Crossreff

Ghosh, R., G. Paul, and D. Basak, Effect of thermal annealing treatment on structural, electrical and optical properties of transparent sol–gel ZnO thin films. Materials research bulletin, 2005. 40(11): p. 1905-1914.

Crossreff

Li, L., et al., Effect of annealing treatment on the structural, optical, and electrical properties of Al-doped ZnO thin films. Rare Metals, 2007. 26(3): p. 247-253.

Crossreff

D. Shiwen, L. Yongtang, Effect of Annealing on Microstructure and Mechanical Properties of Magnetron Sputtered Cu Thin Films. Advances in Materials Science and Engineering, 2015. 5:p. 1-8.

Crossreff

Water, W. and S.-Y. Chu, Physical and structural properties of ZnO sputtered films. Materials Letters, 2002. 55(1-2): p. 67-72.

Crossreff

Wang, Y., et al., Origin of (103) plane of ZnO films deposited by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2013. 24: p. 3764-3767.

Crossreff

Usseinov, A., et al., Hydrogen induced metallization of ZnO (11̅00) surface: Ab initio study. Thin Solid Films, 2014. 553: p. 38-42.

Crossreff

Tu, Y., et al., Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT: PSS diode behaviour. Journal of Materials Chemistry C, 2018. 6(7): p. 1815-1821.

Crossreff

S. Yang. Y. Liu. Y. Zhang, D. Mo: Bulletin of Materials Science, 33 (2014) 209-214.

Sharma, S. and G. Exarhos. Raman spectroscopic investigation of ZnO and doped ZnO films, nanoparticles and bulk material at ambient and high pressures. in Solid State Phenomena. 1997. Trans Tech Publ.

Lee, J.-H., et al., Tuning the morphology and properties of nanostructured Cu-ZnO thin films using a two-step sputtering technique. Metals, 2020. 10(4): p. 437.

Crossreff

Zhang, P., et al., The origin of the∼ 274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO: N thin films. Applied Surface Science, 2015. 327: p. 154-158.

Crossreff

Yahia, S.B., et al., Raman study of oriented ZnO thin films deposited by sol–gel method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008. 71(4): p. 1234-1238.

Crossreff

K. Elmer, R. Mientus: Solid State Phenomena, 37-38 (1994) 433.

Roguai, S., et al., Structure, microstructure and determination of optical constants from transmittance data of co-doped Zn0. 90Co0. 05M0. 05O (MAl, Cu, Cd, Na) films. Journal of alloys and compounds, 2014. 599: p. 150-158.

Crossreff

V. Gokulakrishnan, V. Purushothaman, E. Arthi, K. Jeganathan, K. Ramamurth: The physica status solidi (pss) journal, 209 (2012) 1-6.

Hu, Y., et al., Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering. Vacuum, 2004. 75(2): p. 183-188.

Crossreff

A. A. Alnajjar, Advances in Condensed Matter Physics, 2012. 8: 682125.

Xiu, F., et al., Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy. Applied Physics Letters, 2005. 87(25): p. 252102.

Crossreff

Ghosh, J., R. Ghosh, and P. Giri, Tuning the visible photoluminescence in Al doped ZnO thin film and its application in label-free glucose detection. Sensors and Actuators B: Chemical, 2018. 254: p. 681-689.

Crossreff

Giri, P., et al., Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. Journal of Applied Physics, 2007. 102(9): p. 093515.

Crossreff

Aissani, L., et al., Effect of annealing treatment on the microstructure, mechanical and tribological properties of chromium carbonitride coatings. Surface and Coatings Technology, 2019. 359: p. 403-413.

Crossreff

Aljawf, R.N., F. Rahman, and S. Kumar, Defects/vacancies engineering and ferromagnetic behavior in pure ZnO and ZnO doped with Co nanoparticles. Materials Research Bulletin, 2016. 83: p. 108-115.

Crossreff

Minami, T., H. Nanto, and S. Takata, Highly conductive and transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering. Japanese Journal of Applied Physics, 1984. 23(5A): p. L280.

Crossreff

S. Y. Ma, X. H. Yang, X. L. Huang, A. M. Sun, H. S. Song, H. B. Zhu, Journal of Alloys and Compounds, 2013. 45: p. 9-15.

Downloads

How to Cite

Radjehi, Lamia, Linda Aissani, Abdelkader Djelloul, Abdenour Saoudi, Salim Lamri, Komla Nomenyo, Gilles Lerondel, and Frédéric Sanchette. 2023. “Air and Vacuum Annealing Effect on the Highly Conducting and Transparent Properties of the Undoped Zinc Oxide Thin Films Prepared by DC Magnetron Sputtering”. Metallurgical and Materials Engineering 29 (1):37-51. https://doi.org/10.56801/MME889.

Issue

Section

Research