Effects of processing temperature on in-situ reinforcement formation in Al(Zn)/Al2O3(ZnO) nanocomposite

  • Ali Maleki
  • Behzad Niroumand
  • Mahmood Meratian
Keywords: In-situ, Nanocomposite, Microstructure

Abstract

The aim of present work was to investigate effects of processing temperature on the microstructure of in-situ processed aluminum/alumina composites. A new activated powder injection (API) method was used to synthesize the aluminum matrix composites by displacement reaction between aluminum and zinc oxide. A mechanically activated mixture of aluminum and zinc oxide powder was injected into a vortex of molten aluminum. Three melting temperatures of 680, 730 and 790 °C were selected as the processing temperatures. The composite slurries were solidified under a pressure of 200 MPa. Microstructures of the samples were studied using electron microscopy and image analysis techniques. Refinement of in-situ reinforcements with increasing processing temperature was observed and rationalized.

References

I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, J. Mater. Sci. 26 (1991) 1137-1156.

M. Gupta, T.S. Srivatsan, Mater. Lett. 51 (2001) 255–261.

B. Prabhu, C. Suryanarayana, L. An, R. Vaidyanathan, Mater. Sci. Eng. A 425 (2006) 192–200.

M. Emamy, A. Razaghian, H.R. Lashgari, R. Abbasi, Mater. Sci. Eng. A 485 (2008) 210–217.

Z.H. Tan, B.J. Pang, D.T. Qin, J.Y. Shi, B.Z. Gai, Mater. Sci. Eng. A 489 (2008) 302–309.

Q. Zhang, G. Wu, L. Jiang, Mater. Sci. Eng. A 483–484 (2008) 281–284.

I.S. Ahn, S.Y. Bae1, Y.Y. Kim, Met. Mater Int. 10 (2004) 39-44.

T.W. Chou, A. Kelly, A. Okura, Composites 16 (1986) 187.

H.W. Xing, X.M. Cao, W.P. Hu, L.Z. Zhao, J.S. Zhang, Mater. Lett. 59 (2005) 1563.

S. K. Chaudhury, A. K. Singh, C. S. Sivaramakrishnan, S. C. Panigrahi, Mater. Sci. Eng. A 393 (2005) 196.

K.D. Woo, H.W. Huo, Met. Mater Int. 12 (2006) 45-50.

S.C. Tjong, Z.Y. Ma, Mater. Sci. Eng. R 29 (2000) 49-113.

A. Maleki, M. Meratian, B. Niroumand, M. Gupta, Metall. Mater. Tran. A 39A (2008) 3034-3039.

A.H. Abdulhaqq, P.K. Ghosh, S.C. Jain, S. Ray, Metall. Mater. Trans. A 36A (2005) 2211–2223.

T. Fan, D. Zhang, G. Yang, T. Shibayanagi, M. Naka, J. Mater. Proc. Technol. 142 (2003) 556–561.

P.C. Maity, P.N. Chakraborty, S.C. Panigrahi, Mater. Lett. 30 (1997) 147–151.

Z. Huang, B. Yang, H. Cui, J. Zhang, Mater. Sci. Eng. A 351 (2003) 15–22.

N. Yoshikawa, Y. Watanabe, Z.M. Veloza, A. Kikuchi, S. Taniguchi, Key Eng. Mater. 161 (1999) 311–314.

M. Kobashi, T. Choh, Light Met. 42 (1992) 138–142.

G. Chen, G. Sun, Mater. Sci. Eng. A 244 (1998) 291–295.

P. Yu, C.J. Deng, N.G. Ma, D.H.L. Ng, Mater. Lett. 58 (2004) 679–682.

T.G. Durai, K. Das, S. Das, Mater. Sci. Eng. A 445-446 (2007) 100–105.

M. Tavoosi, F. Karimzadeh, M.H. Enayati, Mater. Lett. 62 (2008) 282–285.

http://www.scioncorp.com/pages/scion_image_windows.html.

A. Maleki, M. Panjepour, M. Meratian, B. Niroumand, J. Mater. Sci. 45 (2010) 5574-5580.

B. Sarangi, A. Sarangi, H.S. Ray, ISIJ Int. 36 (1996) 1135-1141.

B.S.S. Daniel, V.S.R. Murthy, G.S. Murty, J. Mater. Proc. Technol. 68 (1997) 132-155.0

P. Mossino, Ceramics Int. 30 (2004) 311-332.

S. Seetharaman, Treatise on process metallurgy, Elsevier, Oxford, Uk Vol. 1 (2014).

Published
2015-12-31
Section
Articles - archived