Innovative processing routes in manufacturing of metal matrix composite materials

  • Jovana Ruzic Vinča Institute of Nuclear Sciences,University of Belgrade, PO Box 522, 11001 Belgrade
  • Marko Simić Department of Materials, "Vinča" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
  • Nikolay Stoimenov Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Dušan Božić Department of Materials, "Vinča" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
  • Jelena Stašić Department of Materials, "Vinča" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
Keywords: metal matrix composites, mechanical alloying, powder metallurgy, compocasting, laser melting/sintering

Abstract

Metal matrix composites (MMCs) belong to a group of modern materials owing to their excellent technological, mechanical, and physical properties such as excellent wear and corrosion resistance, high electrical and thermal conductivity, improved strength and hardness. Final properties of MMCs are affected equally by all steps of its manufacturing process. It is shown that by using adequate process parameters to obtain starting materials (reaching the specific size, shape, and reactivity) the control of volume fraction and distribution of reinforcements within the matrix can be achieved. For this purpose, mechanical alloying has been appointed as a good approach. MMCs can be produced using powder metallurgy, ingot metallurgy, and additive manufacturing techniques. Combining high-energy ball milling with these techniques enables the design of an innovative processing route for MMCs manufacturing. Mechanochemical process (achieved using high-energy ball milling) was employed in three manufacturing procedures: hot pressing, compocasting, and laser melting/sintering for obtaining of the suitable powder. These production routes for MMCs manufacturing were the subject of this work. The aim of MMCs design is to establish an optimal combination of production techniques merged into the cost-effective fabrication route for obtaining MMCs with required properties.

References

S. M. Sapuan, Composite Materials-Concurrent Engineering Approach, Chapter 3- Composite Materials, first ed., Butterworth-Heinemann, Oxford, 57-93, 2017

Crossreff

M. Haghshenas, Reference Module in Materials Science and Materials Engineering, Chapter Metal-Matrix Composites, 1-28, 2016.

Crossreff

S. Zhang, Y. Ma, L. Suresh, A. Hao, M. Bick, S. C. Tan, J. Chen: ACS Nano, 14 (2020) 9282-9319.

Crossreff

R. Bauri, D. Yadav, Metal Matrix Composites by Friction Stir Processing, Introduction to Metal Matrix Composites, first ed., 1-16, 2018.

Crossreff

A.C. Cyrian, Metal Matrix Composites: History, Status, Factors and Future, first ed., Oklahoma State University, USA, 2011.

T. W. Clyne, P. J. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press, 1993.

Crossreff

Y. Nishida, Introduction to Metal Matrix Composites: Fabrication and Recycling, Nagoya, Japan, 2013

Crossreff

Jones, M.P. Gayer, E.E: The Journal of Historical Metallurgy Society, Vol. 23, pp.2.

S. M. Sapuan, Polimer matrix composites, Penerbit University Putra Malaysia, Serdang, Selangor, 1999.

F. Salvemini, F. Grazzi, N. Kardjilov, I. Manke, A. Scherillo, M. G. Roselli, M. Zoppi: Eur. Phys. J. Plus, 135 (2020) pp.402 .

Crossreff

T.W. Clyne, F.R. Jones, Metal matrix composites: matrices and processing, Elsevier Publications, 2006.

Ruzic J., Stoimenov N., Advanced copper matrix composites, Academy Publishing House, Sofia, Bulgaria, 2016.

N. Stoimenov, J. Ruzic: IFAC-PapersOnLine journal, 52 (25) (2019) pp.462.

Crossreff

P. Balaz, Mechanochemistry in Nanoscience and Minerals Engineering, Berlin - Heidelberg, Springer-Verlag, 2008.

M. El-Eskandarany, Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy, second ed., Elsevier, Amsterdam, 2015.

C. Suryanarayana: Prog. Mater. Sci. 46 (2001) 1-184.

Crossreff

A. Gupta, , D. Yan, Mineral Processing Design and Operations: An introduction, second ed. Elsevier, 2006.

O. D. Neikov, I. B. Murashova, N. A. Yefimov, S. Naboychenko, Handbook of Non-Ferrous Metal Powders: Technologies and Applications, first ed., Elsevier, Amsterdam, 2009.

P. R. Soni, Mechanical alloying: fundamentals and applications, Cambridge International Science Pub, Cambridge, UK, 2000.

M. S. El-Eskandarany, Mechanical alloying for fabrication of advanced engineering materials, Noyes Publications, New York, 2001..

J. Ružić, J. Stašić, V. Rajković, K. Raić, D. Božić, Sci. Eng. Compos. Mater. 22 (6) (2015) p. 665.

Crossreff

J. Ružić, J. Stašić, V. Rajković, D. Božić: Mater. Des. 62 (2014) p. 409.

Crossreff

J.S. Andrus, R. G. Gordon, NASA Contractor Report, Florida, 1989.

D. Božić, J. Stašić, B. Dimčić, M. Vilotijević, V. Rajković: Bull. Mater. Sci. 34 (2011) p.217.

Crossreff

C. R. Deckard, Method and apparatus for producing parts by selective sintering,

Patent number WO 1988002677 A2, 1988.

C. Wang, H. Lin, Z. Zhang, W. Li: J. Alloys Compd. 748 (2018) p. 546.

Crossreff

K. S. Raju, V. B. Prasad, G. B. Rudrakshi, S. N. Ojha: Powder Metall. 46 (3) (2003) p.219.

Crossreff

I. Bobić, J. Ružić, B. Bobić, M. Babić, A. Vencl: Materials Mater. Sci. Eng. A 612 (2014) p.7.

Crossreff

B. Bobic, A. Vencl, J. Ruzic, I. Bobic, Z. Damnjanovic, J. Compos. Mater. 53 (15) (2019) p.2033.

Crossreff

A. Vencl, I. Bobic, B. Bobic, K. Jakimovska, P. Svoboda, M. Kandeva, Friction 7(4) (2019) p.340.

Crossreff

A. Vencl, F. Vučetić, B. Bobić, J. Pitel, I. Bobić, Int. J. Adv. Manuf. Technol., 100 (9-12) (2019) p.2135.

Crossreff

S. Veličković, B. Stojanović, M. Babić, I. Bobić, A. Vencl, G.V. Bognár, F. Vučetić: J. Braz. Soc. Mech. Sci. Eng. 41(1) (2019) p. 19.

Crossreff

B. Stojanović, A. Vencl, I. Bobić, S. Miladinović, J. Skerlić: J. Braz. Soc. Mech. Sci. Eng., 40(6) (2018) p. 311.

Crossreff

S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O'Donoghue, C. Charitidis, Mater. Today 21(1) (2018) p. 22.

Crossreff

D. Gu, Laser Additive Manufacturing of High-Performance Materials, Springer-Verlag, Berlin Heidelberg, 2015.

Crossreff

J.P. Kruth, P. Mercelis, L. Froyen, M. Rombouts: Rapid Prototyp. J. 11(1) (2005) p. 26.

Crossreff

J.P. Kruth, L. Froyen, J.V. Vaerenbergh, P. Mercelis, M. Rambouts, B. Lauwers: J. Mater. Process. Technol. 149 (1-3) (2004) p. 616.

Crossreff

J. Stašić, D. Božić: J. Alloys Compd. 762 (2018) p. 231.

Crossreff

J. Stašić, M. Trtica, V. Rajković, J. Ružić, D. Božić: Appl. Surf. Sci. 321 (2014) p. 353.

Crossreff

J. Stašić, V. Rajković, J. Ružić, D. Božić: Int. J. Adv. Manuf. Technol. 80 (2015) p. 1049.

Crossreff

J. Stašić, D. Božić: Int. J. Mater. Res. 111 (2020) p. 153.

Crossreff

J. Ružić, J Stašić, D Božić, M Dojčinović, T Volkov-Husović: Metall. Mater. Eng. 23 (4), (2017) p. 291.

Crossreff

Published
2021-03-30
Section
Composite materials - novelties in manufacturing and application