Effect of process parameters on the phase transformation kinetics in copper-based alloys and composites

Authors

  • Marko Simić Department of Materials, „VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
  • Nenad Radović Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
  • Milan Gordić Department of Materials, „VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
  • Jovana Ruzic Vinča Institute of Nuclear Sciences,University of Belgrade, PO Box 522, 11001 Belgrade

DOI:

https://doi.org/10.30544/571

Keywords:

copper; copper alloys;, phase transformation kinetics;, process parameters

Abstract

Copper-based alloys and composites, owing to their convenient properties, are being considered essential materials in various industries. Since copper possesses an ability to develop high corrosion resistance, putting it in the domain of a desirable material in the manufacturing of valves, pipes, and also systems that carry industrial gases and aqueous fluids. Its usage is also invaluable for cables and electrical wires. This review paper describes diversity in copper alloy processing techniques (powder and ingot metallurgy) which are alongside the phase transformation kinetics interpreted and explained in detail. Furthermore, the focus is put on the copper alloys, as well as the kinetics present in these systems, with the application being highlighted. Correlation between physical properties and phase transformation kinetics in copper alloys is made. It is shown that if certain alloying elements are to be added, different properties could be improved. The effect of phase precipitation on phase transformation kinetics of copper alloys is shown by studying the Cu-15Ni-8Sn alloy.

References

D. Anderson, H. T. Michels: Metal Ions in Biology and Medicine, 10 (2008) 185-190.

T. R. Chen, P.Y. Lee: J. Mar. Sci. Technol. 1 (1993) 59-64.

K. Sharvan Kumar, Development of dispersion-strengthened XDTM Cu Alloys for high heat-flux applications, NASA Contractor report 191124, 1993.

W. F. Smith, Structure and Properties of Engineering Alloys, second ed., McGraw Hill, New York, 1993.

Link Accessed 01.09.2020.

M. Š. Musa, Z. Schauperl: Process. Appl. Ceram., 7 (2013) 63-68.

Crossreff

D. Chung, Applied Materials Science: Applications of Engineering Materials in Structural, Electronics, Thermal, and Other Industries / D.D.L., 2001.

Crossreff

Link Accessed 23. 08. 2020.

J. Ružić, J. Stašić, S. Marković, K. Raić, D. Božić: Sci. Sinter. 46 (2014) 217-224.

Crossreff

J.S. Andrus, R. G. Gordon, NASA Contractor Report, Florida, 1989

R.S. Jankovskyet et al., NASA Technical Paper, Ohio, 1994

H. Kimura, N. Muramatsu, K Suzuki, Copper Alloy and Copper Alloy Manufacturing

Method, US0211346A1, 2005.

J. Stašić, M. Trtica, V. Rajkovic, J. Ružić, D. Božić: Applied surface science, 321 (2014) 353-357.

Crossreff

A.K. Kuruvilla, K.S. Prasad, V.V. Bhanuprasad, Y.R. Mahajan: Scr. Metall. Mater., 24 (1990)

Crossreff

-878.

C. R. Wang, J. M. Yang, W. Hoffman: Mater. Chem. Phys. 74 (2002) 272-281.

Crossreff

D. Božić, J. Stašić, B. Dimčić, M. Vilotijević, V. Rajković: Bull. Mater. Sci. 34 (2011) 217-226.

Crossreff

C. R. Deckard, Method and apparatus for producing parts by selective sintering,

Patent number WO 1988002677 A2, 1988.

C. Wang, H. Lin, Z. Zhang, W. Li: J. Alloys Compd, 748 (2018) 546-552.

Crossreff

M.M. Opeka, I.G. Talmy, E.J. Wuchina, J.A. Zaykoski, S.J. Causey: J. Eur. Ceram. Soc. 19 (1999) 2405.

Crossreff

D. Božić, I. Cvijović-Alagić, B. Dimčić, J. Stašić, V. Rajković: Sci Sinter. 41 (2009) 143.

Crossreff

C. Zou, Z. Chen, E. Guo, H. Kang, G. Fan, W. Wang, R. Li, S. Zhang, T. Wang: RSC Adv., 8 (2018) 30777.

Crossreff

J.-C. Zhao, Methods for Phase Determination, first ed. Ge Global Research, New York, 2007.

J.-C. Zhao, M.R. Notis, J. Phase Equilib. 14 (1993) 303.

Crossreff

J.-C. Zhao, M.R. Notis, Acta Mater. 46 (1998) 4203.

Crossreff

P. B. Fernandes, G. C. Coelho, F. Ferreira, C. A. Nunes, B. Sundman: Intermetallics 10 (2002) 993.

Crossreff

J.-C. Zhao, M.R. Jackson, L.A. Peluso: Acta Mater. 51 (2003) 6395.

Crossreff

M. Li, L. Zhang, M. Zhu, Physical Properties and Precipitate Microstructures of Cu-Hf

Alloys at Different Processing Stages, Hindawi, 2018

Crossreff

T. Rongzhang, W. Zhutang, Copper Alloy and Its Processing Manual, Central South University Press, 2002.

D. Shangina, Y. Maksimenkova, N. Bochvar et al.: Open J. Adv. Mater. Res. 922 (2014) 651-656.

Crossreff

D. V. Shangina, J. Gubicza, E. Dodony et al.: J. Mater. Sci. 49 (2014) 6674-6681.

Crossreff

Downloads

Published

2020-12-31

How to Cite

Simić, Marko, Nenad Radović, Milan Gordić, and Jovana Ruzic. 2020. “Effect of Process Parameters on the Phase Transformation Kinetics in Copper-Based Alloys and Composites”. Metallurgical and Materials Engineering 26 (4):365-73. https://doi.org/10.30544/571.

Issue

Section

Milan Jovanović - Memorial Issue