Effect of the position of parallelogram ribs in micro channel on heat transfer using diamond nanoparticles

  • Kamel Chadi Laboratory of Materials and Energy Engineering, University of mohamed khider Biskra, Algeria. 2 University Mohamed Khider of Biskra, Algeria
  • Nourredine Belghar Laboratory of Materials and Energy Engineering, University of mohamed khider Biskra, Algeria
  • Mokhtar Falek University Mohamed Khider of Biskra, Algeria
  • Zied Driss Laboratory of Electromechanical Systems, National School of Engineers of Sfax (ENIS), University of Sfax, Tunisia
  • Belhi Guerira Laboratory of Mechanical Engineering, University of mohamed khider Biskra, Algeria
Keywords: thermal exchange; parallelogram ribs; micro-channel; nanofluid.

Abstract

In the present work, we have studied numerically three dimensions, the impact of the position of parallelogram ribs in a micro-channel on thermal exchange. In this study, we proposed three cases of micro-channel heat sinks with parallelogram ribs. As well as one case without ribs, in each of the three cases, we varied the parallelogram rib positions on the micro-channel. The main purpose of this study is to find the best position for parallelograms ribs in which the heat dissipation is useful for improving the thermal performance of the micro-channel as well as improving the cooling of electronic components. We have chosen silicon micro-channel drains for four cases. Constant heat flux is applied to the bottom surfaces and using a nanofluid diamond-water with 5% volume concentration of diamond nanoparticle as a coolant. The simulation has been carried out using the commercial software ANSYS-Fluent. Reynolds number (Re) has been taken between 200 and 400 with the corresponding inlet velocity from 1.53 m/s to 3.01 m/s, and the flow regime has been assumed to be stationary. The numerical results show that the parallelogram ribs position of the micro-channel in the second case gave an improvement in heat exchange, where the Nusselt number is higher than in the other cases, and showed a reduction in the temperature of the heated bottom wall compared to the other cases. Also, the micro-channel shape in the second case can be used to cool the electronic components. The results also showed that with increasing Reynolds number (Re), the friction factor of the micro-channel decreases in all cases. At the same time, we find the lowest value of the thermal resistance in the second case and the biggest value in the first case, base micro-channel without ribs.

References

W. Hongtao, C. Zhihua, G. Jianguo: Applied Thermal Engineering, 107 (2016) 870-879.

Crossref

M. Gholami, M. R. Nazari, M.H. Talebi, F. Pourfattah, O. A. Akbari, D. Toghraie: Chinese Journal of Chemical Engineering, 28 (2020) 643-659.

Crossref

R. Mashayekhi, H. Arasteh, D. Toghraie, S. H. Motaharpour, A. Keshmiri, M. Afrand: Computers & Mathematics with Applications, 79 (2020) 2203-2215.

Crossref

S. V. Jadhav, P. M. Pawar, B. P. Ronge: Journal of Chemical Product and Process Modeling, 14 (2018) 1934-2659.

Crossref

W. He, D. Toghraie, A. Lotfipour, F. Pourfattah, A. Karimipour, M. Afrand: International Communications in Heat and Mass Transfer, 110 (2020) 104440.

Crossref

M. Miansari, H. Aghajani, M. Zarringhalam, D. Toghraie: Journal of Thermal Analysis and Calorimetry (2020).

Crossref

R. Bouakkaz, Y. khelili, A. Abdelouahed: Metallurgical and Materials Engineering, 25 (2019) 225-236

Crossref

Y. Peng, M. Zarringhalam, M. Hajian, D. Toghraie, S. J. Tadi, M. Afrand: Journal of Molecular Liquids, 295 (2019) 111721.

Crossref

E. Khodabandeh, R. Boushehri, O. A. Akbari, S. Akbari, D. Toghraie: Journal of Thermal Analysis and Calorimetry (2020).

Crossref

N. Shirani, D. Toghraie, S. Rostami: Journal of Thermal Analysis and Calorimetry (2020).

Crossref

M. Mehdi, H. Afshin, M. Morteza, T. Davood: Journal of Thermal Science (2020).

Crossref

M. Jamali, D. Toghraie: Journal of Thermal Analysis and Calorimetry, 139 (2020) 685-699.

Crossref

A. Abasi Varzaneh, D. Toghraie, A. Karimipour: Journal of Thermal Analysis and Calorimetry, 139 (2020) 701-720.

Crossref

F. Pourfattah, M. Sabzpooshani, D. Toghraie, A. Asadi: Journal of Thermal Analysis and Calorimetry (2020).

Crossref

W. He, R. Mashayekhi, D. Toghraie, O. AliAkbari, Z. Li, I. Tlili: International Communications in Heat and Mass Transfer, 117 ( 2020) 104700.

Crossref

H. Bazdar, D. Toghraie, F. Pourfattah, O.A. Akbari, H.M. Nguyen, A. Asadi: Journal of Thermal Analysis and Calorimetry, 139 (2020) 2365-2380.

Crossref

S. Fohanno, G. Polidori, C. Popa: Nanofluides et transfert de chaleur par convection naturelle, Université de reims champagne-Ardenne, France, 2012.

K. Khanafer, K. Vafai, M. Lightstone: International Journal Heat and Mass Transfer, 49 (2003) 3639-3653.

Crossref

P. Gunnasegaran, N.H. Shuaib, H.A. Mohammed, M.F. Abdul Jalal, E. Sandhita: Fluid Dynamics, Computational Modeling and Applications, (2012) 287-326.

Crossref

T.C. Hung, W.M. Yan, X.D. Wang, C.Y. Chang: International Journal of Heat and Mass Transfer, 55 (2012) 2559-2570.

Crossref

M.K. Moraveji, R.M. Ardehali, A. Ijam: International Communications in Heat and Mass Transfer, 40 (2013) 58-66.

Crossref

X. Gongnan, L. Shian, S. Bengt, Z. Weihong, L. Haibin: Numerical Heat Transfer, Part A, 65 (2014) 107-126.

Crossref

L. Chai, L. Wang, X. Bai: International Journal of Heat and Mass Transfer, 128 (2019) 634-648.

Crossref

L. Chai, G. Xia, L. Wang, M. Zhou, Z. Cui Z: International Journal of Heat and Mass Transfer, 62 (2013) 741-751.

Crossref

Published
2020-09-25
Section
Science and technology of electronic materials