Friction and wear reduction by graphene nano platelets for hybrid nano Aluminium matrix composite under dry sliding conditions

Authors

  • Pranav Dev SRIVYAS Mechanical Department, National Institute of Technology, Srinagar, Hazrat-bal, 190006, India
  • M.S. CHAROO Mechanical Department, National Institute of Technology, Srinagar, Hazrat-bal, 190006, India

DOI:

https://doi.org/10.30544/536

Keywords:

friction; wear; self-lubrication; nano aluminium matrix composite.

Abstract

Friction losses and wear losses are the main failure reasons in the internal combustion (IC) engine components i.e., cylinder liner and piston. So, it demands lightweight self-lubricating low friction and wear-resistant materials to increase the efficiency and reduce the emission issue of the IC engine. In this concern, tribological tests are performed on self-lubricating aluminium composites samples reinforced with 6 wt.% of γ-Al2O3 and Graphene Nano Platelets (GNP) with varying concentration (0.5 wt.% - 5 wt.%), using ball-on-disc tribo-configuration under dry sliding conditions. The scope of this study is to investigate the anti-friction and anti-wear properties of GNP as reinforcement in the hybrid nanocomposite. The hybrid nanocomposite samples are fabricated using Spark Plasma Sintering (SPS) fabrication route. From the results, it is reported that friction and wear reduction percentage is 37.43 % and 51.64 %, respectively for the hybrid nanocomposite with 5 wt. % GNP. It is attributed to the inclusion of GNP, which reduces the Coefficient of Friction (COF) and improves wear resistance of the composite significantly.

Author Biography

M.S. CHAROO, Mechanical Department, National Institute of Technology, Srinagar, Hazrat-bal, 190006, India

Associate Professor

National Institute Of Technology, Srinagar

References

K.S. Prakash, P. Balasundar, S. Nagaraja, P.M. Gopal, V. Kavimani: Journal of magnesium and alloys, 4 (2016) 197-206.

Crossreff

A. V. Muley, S. Aravindan, I.P. Singh: Manufacturing Review, 2 (2015) 15.

Crossreff

S.C. Tung, M.L. McMillan: Tribology International," 37 (2004) 517-536.

Crossreff

P.D. Srivyas, M.S. Charoo: JurnalTribologi, 25 (2020) 83-101.

P.D. Srivyas, M.S. Charoo: Materials Research Express, 6 (2019) 125702.

Crossreff

P.D. Srivyas, M.S. Charoo: Materials Today: Proceedings, (2020).

Crossreff

D.B. Miracle: Composites science and technology, 65 (2005) 2526-2540.

Crossreff

A. Evans, C. San Marchi, A. Mortensen: Composites in Industry (2003) 9-38.

Crossreff

J. Singh, A. Chauhan: Journal of Materials Research and Technology, 5 (2016) 159-169.

Crossreff

H. Ye: Journal of Materials Engineering and Performance, 12 (2003) 288-297.

Crossreff

M. Chen, T. Perry, A.T. Alpas: Wear, 263 (2007) 552-561.

Crossreff

J.U. Ejiofor, R.G. Reddy: Jom, 49 (1997) 31-37.

Crossreff

K.M. Shorowordi, T. Laoui, A.S.M.A Haseeb, J.P. Celis, L. Froyen: Journal of Materials Processing Technology, 142 (2003) 738-743.

Crossreff

Z. Wang, L. Wu, Y. Qi, W. Cai, Z. Jiang: Surface and Coatings Technology, 204 (2001) 3315-3318.

Crossreff

H. Chandrasekaran, J.O. Johansson: CIRP Annals, 46 (1997) 493-496.

Crossreff

L. Pedersen, L. Arnberg: Materials Science and Engineering: A, 241 (1998) 285-289.

Crossreff

N. Roy, A.M. Samuel, F.H. Samuel: Metallurgical and Materials transactions A, 27 (1996) 415-429.

Crossreff

M. Elmadagli, T. Perry, A.T. Alpas: Wear,262 (2007) 79-92.

Crossreff

A.B. Gurcan, T.N. Baker: Wear, 188 (1995) 185-191.

Crossreff

J.I. Song, K.S. Han: Composite structures, 39 (1997) 309-318.

Crossreff

B. Yazdani, H. Porwal, Y. Xia, H. Yan, M.J. Reece, Y. Zhu: Ceramics International, 41 (2015) 9813-9822.

Crossreff

J. Llorente, M. Belmonte: Journal of the European Ceramic Society, 38 (2018) 3441-3446.

Crossreff

L.Y. Chen, H. Konishi, A. Fehrenbacher, C. Ma, J.Q. Xu, H. Choi, X. C. Li: ScriptaMaterialia, 67 (2012) 29-32.

Crossreff

A.D. Moghadam, E. Omrani, P.L. Menezes, P.K. Rohatgi: Composites Part B: Engineering, 77 (2015) 402-420.

Crossreff

Standard, A. S. T. M. (2010) G133-05.

V. Iliuţă, M. Rîpă, J. Javorova, G. Andrei: IOP Conference Series: Materials Science and Engineering, 174 (2017) 012015.

Crossreff

P. Kumar, M.F. Wani: Journal of Tribology, 140 (2018) 1-19.

Crossreff

A.T. Pérez, A.H. Battez, G. García-Atance, J.L. Viesca, R. González, M. Hadfield: Wear, 271 (2011) 2963-2967.

Crossreff

C. Georgescu, L. Deleanu, C. Pirvu: Mater SciEng, 147 (2016).

Crossreff

S.D. Heintze, A. Cavalleri, M. Forjanic, G. Zellweger, V. Rousson: Dental Materials, 22 (2006) 1051-1062.

Crossreff

S. Le Roux, C. Boher, L. Penazzi, C. Dessain, B. Tavernier: Tribology international, 52 (2012) 40-49.

Crossreff

M.C. Valigi, S. Logozzo, S. Affatato: Materials, 10 (2017) 548.

Crossreff

R.J.K. Wood, P. Ramkumar, L. Wang, T.J. Wang, K. Nelson, E.S. Yamaguchi, N. Otin: Tribology and Interface Engineering Series, 48 (2005) 109-121.

Crossreff

P. Heilmann, J. Don, T.C. Sun, D.A. Rigney, W.A. Glaeser: Wear, 91 (1983) 171-190.

Crossreff

S.L. Rice, H. Nowotny, S.F. Wayne: Wear, 74 (1981) 131-142.

Crossreff

P.D. Srivyas, M.S. Charoo: Journal of Tribology, (2020) 1-29.

Crossreff

wear zone analysis

Downloads

Published

2020-11-19

How to Cite

SRIVYAS, Pranav Dev, and M.S. CHAROO. 2020. “Friction and Wear Reduction by Graphene Nano Platelets for Hybrid Nano Aluminium Matrix Composite under Dry Sliding Conditions”. Metallurgical and Materials Engineering 27 (1):27-47. https://doi.org/10.30544/536.

Issue

Section

Composite materials - novelties in manufacturing and application