Chemical durability of sintered glass-composite prepared from glass cullet and waste foundry sand

  • Veljko Savić Institute for Technology of Nuclear and other Mineral Raw Materials
  • Vladimir Topalović Institute the Technology of Nuclear and other Mineral Raw Materials
  • Srđan Matijašević Institute for Technology of Nuclear and other Mineral Raw Materials
  • Jelena Nikolić Institute for Technology of Nuclear and other Mineral Raw Materials
  • Snežana Grujić University of Belgrade, Faculty of Technology and Metallurgy
  • Snežana Zildžović Institute for Technology of Nuclear and other Mineral Raw Materials
  • Aleksandra Radulović Institute of General and Physical Chemistry
Keywords: glass cullet, waste foundry sand, sintering, glass-composite

Abstract

In this study, the glass-composite was prepared using glass cullet and waste foundry sand as raw materials. The powder technology route was employed. The mixtures containing 10-50 wt% of the sand were sintered at T = 750 °C for t =1h. XRD and DTA analyses were performed. The chemical durability of the resulting glass-composite was determined by leaching test in HCl, H2SO4, NaOH and distilled water at T = 95 °C for t =1h. It was shown that the sintering process carried out without the crystallization of the glass matrix. The lowest chemical durability was determined in alkali solution of glass-composite.

References

L. Maccarini Schabbac, F. Andreola, E. Karamanova, I. Lancellotti, A. Karamanov, L. Barbieri: J Non-Cryst Solids, 357(1) (2011) 10-17.

Crossreff

M. Rafieizonooz, J. Mirza, M. Salim, M. Hussin, E. Khankhaje: Constr Build Mater, 116 (2016) 15-24.

Crossreff

I. Ponsot, E. Bernardo, E. Bontempi, L. Depero, R. Detsch, R. Chinnam, A. Boccaccini: J Clean Prod, 89 (2015) 224-230.

Crossreff

L. Aranda, T. Schweitzer, P. Berthod, C. Rapin, D. Souchon, F. Maad, J. Brossard: J. Mater Sci Technol Res, 5 (2018) 6-10.

Link

G. Qian, Y. Song, Y. Zhang, Y. Xia, H. Zhang, P. Chui: Waste Manage, 26 (2006) 1462.

Crossreff

P. Trifunović, S. Marinković, R. Tokalić, S. Matijašević: Thermochim Acta, 498 (1-2) (2010) 1-6.

Crossreff

Ž. Kamberović, Z. Anđić, M. Korać, N. Gajić, B. Tomović: Metall Mater Eng, 23(2) (2017) 167-181.

Crossreff

R. Cimdins, I. Rozenstrauha, L. Berzina, J. Bossert, M. Bucker: Resour Conserv Recycl, 29 (2000) 285-290.

Crossreff

V. Gomes, C. De Borba, J. Riella: J Mat Sci, 37 (12) (2002) 2581-2585.

Crossreff

K. Dana, S. Das: J Mater Sci Lett, 22 (2003) 387-389.

Crossreff

A. Francis: J Eur Ceram Soc, 24 (2004) 2819-2824.

Crossreff

A. Boccaccini, M. Bucker, J. Bossert, K. Marszalek: Waste Manage, 17 (1997) 39-45

Crossreff

R. Rawlings: Composites, 25 (1994) 372.

Crossreff

R. Rawlings, J. Wu, A. Boccaccini: J Mater Sci, 41 (2006) 733-761.

Crossreff

A. Torres, L. Bartlett, C. Pilgrim: Constr Build Mater, 135 (2017) 674-681.

Crossreff

A. Karamanov, M. Pelino, M. Salvo, I. Metekovits: J Eur Ceram Soc, 23 (2003) 1609-1615.

Crossreff

W. B. White, Corrosion of glass, ceramics and ceramic superconductors, Noyes Publications, New Jersey, 1992, 2-28.

S. Gin, C. Jégou, P. Frugier, Y. Minet: Chem Geol, 255 (2008) 14-24.

Crossreff

B. Bunker, D. Tallant, T. Headley, G. Turner, R. Kirkpatrick: Phys Chem Glasses, 29 (1988) 106-120.

Published
2020-07-28