Thermal characterization of the In–Sn–Zn eutectic alloy

  • Dragan Manasijević University of Belgrade, Technical Faculty in Bor, Bor, Serbia
  • Ljubiša Balanović University of Belgrade, Technical Faculty in Bor, Bor, Serbia
  • Vladan Ćosović Institute of Chemistry, Technology and Metallurgy
  • Duško Minić University of Priština, Faculty of Technical Sciences, Kosovska Mitrovica, Serbia
  • Milena Premović University of Priština, Faculty of Technical Sciences, Kosovska Mitrovica, Serbia
  • Milan Gorgievski University of Belgrade, Technical Faculty in Bor, Bor, Serbia
  • Uroš Stamenković University of Belgrade, Technical Faculty in Bor, Bor, Serbia
  • Nadežda Talijan Academy of Engineering Sciences of Serbia, Department of Technology, Metallurgy and Materials Science, Belgrade, Serbia
Keywords: In–Sn–Zn system, eutectic alloy, latent heat of melting, thermal conductivity

Abstract

Thermal properties, including melting temperature, latent heat of melting, specific heat capacity and thermal conductivity, of a low-melting In–Sn–Zn eutectic alloy were investigated in this work. The In–Sn–Zn eutectic alloy with nominal composition 52.7In-44.9Sn-2.4Zn (at.%) was prepared by the melting of pure metals under an argon atmosphere. The conducted assessment consisted of both theoretical and experimental approaches. Differential scanning calorimetry (DSC) was used for the measurement of melting temperature and latent heat, and the obtained results were compared with the results of thermodynamic calculations. The measured melting temperature and the latent heat of melting for the In–Sn–Zn eutectic alloy are 106.5±0.1 °C and 28.3±0.1 Jg-1, respectively. Thermal diffusivity and thermal conductivity of the In–Sn–Zn eutectic alloy were studied by the xenon-flash method. The determined thermal conductivity of the investigated eutectic alloy at 25 °C is 42.2±3.4 Wm-1K-1. Apart from providing insight into the possibility for application of the investigated alloy as the metallic phase-change material, the obtained values of thermal properties can also be utilized as input parameters for various simulation processes such as casting and soldering.

References

A. Debski, B. Onderka, W. Gasior, T. Gancarz: Arch. Metall. Mater., 62 (2017) 1945-1955.

Crossref

Y. Cui, X.J. Liu, I. Ohnuma, R. Kainuma, H. Ohtani, K. Ishida: J. Alloy Compd., 320 (2001) 234-241.

Crossref

M. McCormack, S. Jin, H. S. Chen, D. A. Machusak: J. Electron. Mater., 23 (1994) 687-690.

Crossref

J.M. Fiorani, C. Naguet, J. Hertz, A. Bourkba, L. Bouirden: Z.Metallkde., 88 (1997) 711-716.

Y. Xie, H. Schicketanz, A. Mikula: Ber. Bunssenges. Phys. Chem., 102 (1998) 1334-1338.

Crossref

X.H. Yang, S.C. Tan, J. Liu: Int J Heat Mass Transf., 100 (2016) 899-907.

Crossref

X.H. Yang, S.C. Tan, Y.J. Ding, L. Wang, J. Liu, Y.X. Zhou, Int. Commun. Heat Mass., 87 (2017) 118-24.

Crossref

A.S. Fleischer, Thermal energy storage using phase change materials: fundamentals and applications. New York: Springer; 2015.

H. Ge, H. Li, S. Mei, J. Liu: Renew Sustain Energy Rev., 21 (2013) 331-346.

Crossref

J. Rodrıguez-Aseguinolaza, P. Blanco-Rodrıguez, E. Risueno, M.J. Tello, S. Doppiu. J Therm Anal Calorim., 117 (2014) 93-99.

Crossref

I. Manasijević, Lj. Balanović, T. Holjevac Grgurić, D. Minić, M. Gorgievski: J Therm Anal Calorim., 136 (2019) 643-649.

Crossref

I. Manasijević, Lj. Balanović, T. Holjevac Grgurić, D. Minić, M. Gorgievski: Mater. Res.-Ibero-Am J., 21 (2018) e20180501.

Crossref

ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, (Materials Park, OH, ASM International, 1990). ISBN: 978-0-87170-378

J.K. Wu, K.L. Lin, B. Salam, Journal of Electronic Materials, 38 (2009) 227-230.

Crossref

C. Morando, O. Fornaro, O. Garbellini, H. Palacio: J Mater Sci: Mater Electron., 25(8) (2014) 3440-3447.

Crossref

D. Manasijević, Ž. Radović, N. Štrbac, Lj. Balanović, U. Stamenković, M. Gorgievski, M. Premović, T. Holjevac Grgurić, N. Tadić: Mater Test, 60 (12) (2018) 1175-1178.

Crossref

H.L. Lukas, S.G. Fries, B. Sundman: Computational thermodynamics: the calphad method. Cambridge: Cambridge University Press; 2007.

Crossref

B. Sundman: J. Min. Metall. Sect. B-Metall. 53(3) B (2017) 173-177.

Crossref

A. Kroupa, A.T. Dinsdale, A. Watson, J. Vrestal, J. Vízdal, A. Zemanova: JOM, 59 (7) (2007) 20-25.

Crossref

W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, W.A. Oates: Calphad, 33 (2009) 328-342.

Crossref

W.J. Boettinger, U.R. Kattner, K.W. Moon, J.H. Perepezko: DTA and heat flux DSC measurements of alloys melting and freezing. In: Zhao JC, editor. Methods for phase diagram determination. Oxford: Elsevier; 2007. p. 152-222.

Crossref

W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott: J Appl Phys, 32 (9) (1961) 1679-1684.

Crossref

L. Huang, S. Liu, Y. Du, C. Zhang: Calphad, 62 (2018) 99-108.

Crossref

Indium Corporation, Denotes Materials that Indium Corporation can provide, Crossref . Accessed 02 March 2019.

S. Stankus, I.V. Savchenko, A.Sh. Agazhanov: Int. J. Thermophys, 33 (2012) 774-782.

Crossref

I. Manasijević, Lj. Balanović, D. Minić, M. Gorgievski, U. Stamenković: Kovove Mater., 57 (2019) 267-273.

Crossref

Published
2020-01-14
Section
Djordje Drobnjak - Memorial Issue