Thermal characterization of the In-Sn-Zn eutectic alloy
DOI:
https://doi.org/10.30544/456Keywords:
In–Sn–Zn system, eutectic alloy, latent heat of melting, thermal conductivityAbstract
Thermal properties, including melting temperature, latent heat of melting, specific heat capacity and thermal conductivity, of a low-melting In-Sn-Zn eutectic alloy were investigated in this work. The In-Sn-Zn eutectic alloy with nominal composition 52.7In-44.9Sn-2.4Zn (at.%) was prepared by the melting of pure metals under an argon atmosphere. The conducted assessment consisted of both theoretical and experimental approaches. Differential scanning calorimetry (DSC) was used for the measurement of melting temperature and latent heat, and the obtained results were compared with the results of thermodynamic calculations. The measured melting temperature and the latent heat of melting for the In-Sn-Zn eutectic alloy are 106.5 ±0.1 °C and 28.3 ±0.1 Jg-1, respectively. Thermal diffusivity and thermal conductivity of the In-Sn-Zn eutectic alloy were studied by the xenon-flash method. The determined thermal conductivity of the investigated eutectic alloy at 25 °C is 42.2 ±3.4 Wm-1K-1. Apart from providing insight into the possibility for application of the investigated alloy as the metallic phase-change material, the obtained values of thermal properties can also be utilized as input parameters for various simulation processes such as casting and soldering.
References
A. Debski, B. Onderka, W. Gasior, T. Gancarz: Arch. Metall. Mater., 62 (2017) 1945-1955.
Y. Cui, X.J. Liu, I. Ohnuma, R. Kainuma, H. Ohtani, K. Ishida: J. Alloy Compd., 320 (2001) 234-241.
M. McCormack, S. Jin, H. S. Chen, D. A. Machusak: J. Electron. Mater., 23 (1994) 687-690.
J.M. Fiorani, C. Naguet, J. Hertz, A. Bourkba, L. Bouirden: Z.Metallkde., 88 (1997) 711-716.
Y. Xie, H. Schicketanz, A. Mikula: Ber. Bunssenges. Phys. Chem., 102 (1998) 1334-1338.
X.H. Yang, S.C. Tan, J. Liu: Int J Heat Mass Transf., 100 (2016) 899-907.
X.H. Yang, S.C. Tan, Y.J. Ding, L. Wang, J. Liu, Y.X. Zhou, Int. Commun. Heat Mass., 87 (2017) 118-24.
A.S. Fleischer, Thermal energy storage using phase change materials: fundamentals and applications. New York: Springer; 2015.
H. Ge, H. Li, S. Mei, J. Liu: Renew Sustain Energy Rev., 21 (2013) 331-346.
J. Rodrıguez-Aseguinolaza, P. Blanco-Rodrıguez, E. Risueno, M.J. Tello, S. Doppiu. J Therm Anal Calorim., 117 (2014) 93-99.
I. Manasijević, Lj. Balanović, T. Holjevac Grgurić, D. Minić, M. Gorgievski: J Therm Anal Calorim., 136 (2019) 643-649.
I. Manasijević, Lj. Balanović, T. Holjevac Grgurić, D. Minić, M. Gorgievski: Mater. Res.-Ibero-Am J., 21 (2018) e20180501.
ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, (Materials Park, OH, ASM International, 1990). ISBN: 978-0-87170-378
J.K. Wu, K.L. Lin, B. Salam, Journal of Electronic Materials, 38 (2009) 227-230.
C. Morando, O. Fornaro, O. Garbellini, H. Palacio: J Mater Sci: Mater Electron., 25(8) (2014) 3440-3447.
D. Manasijević, Ž. Radović, N. Štrbac, Lj. Balanović, U. Stamenković, M. Gorgievski, M. Premović, T. Holjevac Grgurić, N. Tadić: Mater Test, 60 (12) (2018) 1175-1178.
H.L. Lukas, S.G. Fries, B. Sundman: Computational thermodynamics: the calphad method. Cambridge: Cambridge University Press; 2007.
B. Sundman: J. Min. Metall. Sect. B-Metall. 53(3) B (2017) 173-177.
A. Kroupa, A.T. Dinsdale, A. Watson, J. Vrestal, J. Vízdal, A. Zemanova: JOM, 59 (7) (2007) 20-25.
W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, W.A. Oates: Calphad, 33 (2009) 328-342.
W.J. Boettinger, U.R. Kattner, K.W. Moon, J.H. Perepezko: DTA and heat flux DSC measurements of alloys melting and freezing. In: Zhao JC, editor. Methods for phase diagram determination. Oxford: Elsevier; 2007. p. 152-222.
W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott: J Appl Phys, 32 (9) (1961) 1679-1684.
L. Huang, S. Liu, Y. Du, C. Zhang: Calphad, 62 (2018) 99-108.
Indium Corporation, Denotes Materials that Indium Corporation can provide, Link. Accessed 02 March 2019.
S. Stankus, I.V. Savchenko, A.Sh. Agazhanov: Int. J. Thermophys, 33 (2012) 774-782.
I. Manasijević, Lj. Balanović, D. Minić, M. Gorgievski, U. Stamenković: Kovove Mater., 57 (2019) 267-273.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2020 Dragan Manasijević, Ljubiša Balanović, Vladan Ćosović, Duško Minić, Milena Premović, Milan Gorgievski, Uroš Stamenković, Nadežda Talijan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their published articles online (e.g., in institutional repositories or on their website, social networks like ResearchGate or Academia), as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.



According to the