Unlimited potentials of carbon: different structures and uses (a Review)

Authors

  • Onyeka Stanislaus Okwundu Egypt-Japan University of Science and Technology (E-JUST), Egypt. https://orcid.org/0000-0002-7655-2392
  • Emmanuel Uche Aniekwe University of Benin
  • Chinaza Emmanuel Nwanno Department of Physics, University of Benin

DOI:

https://doi.org/10.30544/388

Keywords:

Allotropes of carbon, structures of carbon, applications of carbon, amorphous carbon, carbon nanomaterials.

Abstract

Carbon is a unique chemical element whose different forms or allotropes are inexhaustible in number. It has been in use since antiquity and now, the possibility of manipulating the lattice structure of its crystalline allotropes, offers it unlimited advanced applications. This review aims at demonstrating certain aspects of engineering material in different applications. Various structures of some identified allotropes carbon, respective properties and uses of the allotropes were reviewed. Amorphous carbon materials find application mainly as fuels and sometimes as parent materials for synthesis of more useful chemicals. Their limited application was ascribed to their unstable irregular patterned structure which cannot be manipulated easily to meet further needs. Structurally, carbon exists in the sp3 and sp2 hybridized state in the crystal lattice of its crystalline allotropes. Due to the salient features of its allotropes, carbon finds application in energy generation and storage, optics, electronics, opto-electronics, electro-catalysis, corrosion control, bio-sensing (diagnostics), sensing, agriculture, water treatment, making of composite materials with unique properties and more. There is no limit to the application of carbon. It was recommended that renewable and sustainable alternative precursors for synthesis of carbon nanomaterials with crystal growth control be sought for.

Author Biographies

Onyeka Stanislaus Okwundu, Egypt-Japan University of Science and Technology (E-JUST), Egypt.

Masters degree research student of Chemical and Petrochemical Engineering

Emmanuel Uche Aniekwe, University of Benin

B.Eng. First Class Hons.

References

S. Nasir, M. Z. Hussein, Z. Zainal, N. A. Yusof: Materials, 11 (2018) 1-24.

Crossreff

M. Loos, "Allotropes of Carbon and Carbon Nanotubes," in Carbon Nanotube Reinforced Composites, Elsevier. Amsterdam, The Netherlands, 2015, pp. 73-101.

Crossreff

C. J. Allegre, J. Poirier, E. Humler, A. W. Hofmann: Earth Planet Sci Lett., 134 (1995) 515-526.

Crossreff

N. R. Pace: Proc Natl Acad Sci, 98 (2001) 805-808.

Crossreff

CK-12 Chemistry, "Carbon, A Unique Element," FlexBooks, 2012. [Online]. Available: LINK [Accessed: 20-Sep-2018].

O. Y. Ababio, New School Chemistry for Senior Secondary Schools, Revised Ed. Africana-FEP Publishers Limited, 1980.

Y. Zhang and Q. Yin: Proc Natl Acad Sci, 109 (2012) 19579-19583.

Crossreff

Britannica, "Allotropy," Encyclopædia Britannica, inc., 2017. [Online]. Available: LINK [Accessed: 19-Sep-2018].

J. Pang, A. Bachmatiuk, I. Ibrahim, L. Fu, and D. Placha: J Mater Sci, 51 (2016) 640-667.

Crossreff

M.-M. Titirici et al.: Chem Soc Rev, 44 (2015) 250-290.

Crossreff

F. Rodriguez-reinoso: Carbon N. Y., 36 (1998) 159-175.

Crossreff

M. J. Allen, V. C. Tung, and R. B. Kaner: Chem Rev, 110 (2010) 132-145.

Crossreff

A. K. Geim and K. S. Novoselov: Nat Mater, 6 (2007) 183-191.

Crossreff

Askiitians, "Allotropes of Carbon," 2018. [Online]. Available: LINK [Accessed: 22-Sep-2018].

Atomistry, "Element Carbon, C, Non Metal," 2012. [Online]. Available: LINK [Accessed: 22-Sep-2018].

T. Frauenheim, G. Jungnickel, T. Kohler, U. Stephan: J Non Cryst Solids, 182 (1995) 186-197.

Crossreff

A. Kouchi, "Amorphous Carbon," Encycl. Astrobiol., pp. 3-4, 2014.

J. Robertson: Adv Phys, 35 (1986) 317-374.

Crossreff

Passnownow, "amorphous Forms of Carbon," 2018. [Online]. Available: LINK [Accessed: 22-Sep-2018].

A. Mohammed, A. A. Aboje, M. Auta, M. Jibril: Pelagia Res Libr Adv Appl Sci Res, 3 (2012) 3089-3096. LINK

W. Roberts, "Current Medical Literature - MEDICINE: On the Verification of Sugar-Testing in the Urine," INDIAN Med. GAZETTE., p. 144, Apr. 1896.

Atomistry, "Animal Charcoal," 2012. [Online]. Available: LINK [Accessed: 22-Sep-2018].

Orion Carbons, "Carbon Black Pigments for Powder Coatings," Orion Engineered Carbons, pp. 1-16, 2014.

Y. Matsuhisa, "Tensile failure of carbon fibers," Handb. Tensile Prop. Text. Tech. Fibres, pp. 574-602, Jan. 2009.

M. INAGAKI, "Carbon Fibers," in New Carbons - Control of Structure and Functions, Elsevier Science, 2000, pp. 82-123.

S. J. Park and M. K. Seo, Element and Processing, vol. 18. Elsevier, 2011.

Zoltek Toray Group, "What is Carbon Fiber?," Zoltek, 2018. [Online]. Available: LINK [Accessed: 22-Sep-2018].

O. Paris and H. Peterlik, "The structure of carbon fibres," Handb. Text. Fibre Struct., pp. 353-377, Jan. 2009.

How Things Made, "How Carbon Fiber Car Parts are Made," YouTube Video, 2017. [Online]. Available: LINK [Accessed: 22-Sep-2018].

How Things Made, "How Carbon Fiber Car Parts are Made," Google, 2017. [Online]. Available: LINK [Accessed: 22-Sep-2018].

A. B. Morgan, "Flame retardant fiber-reinforced composites," Handb. Fire Resist. Text., pp. 623-652, Jan. 2013.

J. Adams, "Coking 101 An Introduction to Delayed Coking," Process Engineering Associates. LLC. [Online]. Available: LINK

J. Emsley, The Elements, 3rd ed. Oxford University Press, 1998.

H. Marsh and F. Rodríguez-Reinoso, Characterization of Activated Carbon, 1st ed., no. 1. Elsevier Science & Technology Books, 2006.

A. A. Peláez-Cid and M. M. M. Teutli-León, Lignocellulosic Precursors Used in the Synthesis of Activated Carbon: Characterization Techniques and Applications in the Wastewater Treatment, 1st ed. InTech: Rijeka, Crotia, 2012.

F.-C. Wu, R.-L. Tseng, and R.-S. Juang, "Preparation of highly microporous carbons from fir wood by KOH activation for adsorption of dyes and phenols from water," Sep. Purif. Technol., vol. 47, no. 1-2, pp. 10-19, Dec. 2005.

Crossreff

R. G. Pereira et al.: Fuel Process Technol, 126 (2014) 476-486.

Crossreff

L. Ji, P. Meduri, V. Agubra, X. Xiao, and M. Alcoutlabi: Adv Energy Mater, 6 (2016) 7-16.

Crossreff

I. Whiteflash, "Legend of the Rock : A Two Thousand Year History of the Diamond." whiteflash.com pp. 1-16, 2010.

G. Smith, "The allure, magic and mystery — A brief history of diamonds," J. South African Inst. Min. Metall., no. November, pp. 529-534, 2003.

H. P. Wentorf, R. H. Jr. Bovenkerk: Astrophys J, 134 (1961) 995-1005.

Crossreff

M. E. Thomas and W. J. Tropf: Johns Hopkins APL Tech Dig, 14 (1993) 16-23.

Atomic World, "Different types of carbon," Carbon Nanostructures. [Online]. Available: LINK [Accessed: 23-Sep-2018].

Gisaxs, "Lattice:Diamond," 2016. [Online]. Available: Crossreff [Accessed: 23-Sep-2018].

Brian0918, "Diamond animation," Wikimedia Commons, 2005. [Online]. Available: LINK [Accessed: 23-Sep-2018].

S. V. Kidalov, F. M. Shakhov: Materials (Basel), 2 (2009) 2467-2495.

Crossreff

E. A. Ekimov, N. V. Suetin, A. F. Popovich, V. G. Ralchenko: Diam Relat Mater, 17 (2008) 838-843.

Crossreff

B. J. M. Hausmann et al.: Diam Relat Mater, 19 (2010) 621-629.

Crossreff

W. Ebert, M. Adamschik, P. Gluche, A. Flöter, E. Kohn: Diam Relat Mater, 8 (1999) 1875-1877.

Crossreff

A. Deneuville: Comptes Rendus l'Académie des Sci - Ser IV - Phys, 1 (2000) 81-90.

A. G. Conly, "Mining Carbon to Decrease the Carbon Footprint," Scientia, 2017. [Online]. Available: LINK [Accessed: 24-Sep-2018].

T. V Thu, Y. Tanizawa, N. H. H. Phuc, P. J. Ko, and A. Sandh, "Synthesis and characterization of graphite nanoplatelets," J. Phys. Conf. Ser., vol. 433, no. conference 1, 2013.

B. G. Krishna and M. J. Rao: Int J Adv Res, 3 (2015) 391-397.

N. Deprez, D. S. McLachlan: J Phys D Appl Phys, 21 (1988) 101-107.

Crossreff

Benjah-bmm27, "Graphite-layers-side-3D-balls," Wikimedia Commons, 2007. [Online]. Available: LINK [Accessed: 23-Sep-2018].

W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, G. Chen: J Mater Chem, 20 (2010) 5817-5819.

Crossreff

R. Raccichini, A. Varzi, S. Passerini, B. Scrosati: Nat Mater, 14 (2014) 271-279.

Crossreff

Oxford Dictionary, "fullerene," Oxford University Press, 2018. [Online]. Available: LINK [Accessed: 25-Sep-2018].

M. Vizuete, M. Barrejón, M. J. Gómez-Escalonilla, F. Langa: Nanoscale, 4 (2012) 4370-4381.

Crossreff

Michigan State University, "Cn Fullerenes." [Online]. Available: LINK [Accessed: 25-Sep-2018].

S. Duan et al.: RSC Adv, 7 (2017) 21124-21127.

Crossreff

X. Wu and X. C. Zeng: Nano Lett, 9 (2009) 250-256.

Crossreff

"C720 Fullerene," [Online].

L. Dorneanu, "New Nanomaterial Forms Nanobuds," Softpedia News, 2007. [Online]. Available: LINK [Accessed: 25-Sep-2018].

X. Wang et al: Nano Lett, 9 (2009) 3137-3141.

Crossreff

M. Zhang, J. Li: Mater Today, 12 (2009) 12-18.

Crossreff

R. Purohit, K. Purohit, S. Rana, R. S. Rana, V. Patel: Procedia Mater Sci, 6 (2014) 716-728.

Crossreff

L. Liu, J. Zhao: "Toroidal and Coiled Carbon Nanotubes," in Syntheses and Applications of Carbon Nanotubes and Their Composites., S. Suzuki, Ed. IntechOpen, 2013.

A. G. Nasibulin et al.: Nat Nanotechnol, 2 (2007) 156-161.

Crossreff

H. Su, W. A. Goddard, Y. Zhao: Nanotechnology, 17 (2006) 5691-5695.

Crossreff

M. Wang, C. M. Li: Nanotechnology, 21 (2009) 035704.

Crossreff

M. Garrido et al.: Chem Commun, 53 (2017) 12402-12405.

Crossreff

IOP Publishing, "'Nanotorus' nets giant magnetic moment," Physics World - Nanomaterials, 2002. [Online]. Available: LINK [Accessed: 29-Sep-2018].

L. Liu, G. Y. Guo, C. S. Jayanthi, S. Y. Wu: Phys Rev Lett, 88 (2002) 2172061-2172064.

M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi: Discret Appl Math, 157 (2009) 804-811.

Crossreff

J. Liu et al.: Nature, 385 (1997) 780-781.

Crossreff

M. Ahlskog et al.: Chem Phys Lett, 300 (1999) 202-206.

Crossreff

R. Martel, H. R. Shea, P. Avouris: Nature, 398 (1999) 299.

Crossreff

R. Martel, H. R. Shea, P. Avouris: J Phys Chem B, 103 (1999) 7551-7556.

Crossreff

M. Sano, A. Kamino, J. Okamura, S. Shinkai: Science (80-. ), 293 (2001) 1299-1301.

Crossreff

L. Song et al.: Adv Mater, 18 (2006) 1817-1821.

Crossreff

Y. Li et al.: Carbon N. Y., 43 (2005) 31-35.

Crossreff

Z. Qin, Q.-H. Qin, X.-Q. Feng: Phys Lett A, 372 (2008) 6661-6666.

Crossreff

R. R. Adzic et al.: Top Catal, 46 (2007) 249-262.

Crossreff

H. Fei et al.: ACS Nano, 8 (2014) 10837-10843.

Crossreff

S. M. Abbas, S. T. Hussain, S. Ali, N. Ahmad, N. Ali, S. Abbas: J Mater Sci, 48 (2013) 5429-5436.

Crossreff

D. W. H. Fam et al.: J Mater Sci, 50 (2015) 6578-6585.

Crossreff

Zenblade 93, "Carbon nanotube," SlideShare, 2010. [Online]. Available: LINK [Accessed: 26-Sep-2018].

H. Sun, P. She, G. Lu, K. Xu, W. Zhang, Z. Liu: J Mater Sci, 49 (2014) 6845-6854.

Crossreff

Zhuang Liu, J. T. Robinson, X. Sun, H. Dai: J Am Chem Soc, 130 (2008) 10876-10877.

Crossreff

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, Y. Lin: Biosens Bioelectron, 25 (2009) 901-905.

Crossreff

Dan Du et al.: Anal Chem, 82 (2010) 2989-2995.

Crossreff

S. Jain, S. R. Singh, S. Pillai: J Nanomed Nanotechnol, 3 (2012) 2.

Crossreff

S. K. U. Rehman, Z. Ibrahim, S. A. Memon, M. F. Javed, R. A. Khushnood: Sustain, 9 (2017) 1-20.

Crossreff

B. Van der Bruggen: ISRN Nanotechnol, 2012 (2012) 1-17.

Crossreff

M. Foley, "Graphene for fertiliser focus of agtech research," Farm Online News, 2018. [Online]. Available: LINK [Accessed: 25-Sep-2018].

The University of Adelaide, "Graphene promise for more efficient fertilizers," ScienceDaily, 2018. [Online]. Available: LINK [Accessed: 25-Sep-2018].

A. Mukherjee, S. Majumdar, A. D. Servin, L. Pagano, O. P. Dhankher, and J. C. White: Front Plant Sci, 7 (2016) 1-16.

Crossreff

A. Katwala, "Graphene 'tattoos' for plants enable real-time farming data," Institution of Mechanical Engineers Engineering News, 2018. [Online]. Available: LINK [Accessed: 25-Sep-2018].

K. S. Aneja, H. L. M. Böhm, A. S. Khanna, S. Böhm: FlatChem, 1 (2017) 11-19.

Crossreff

J. Hu, Y. Ji, Y. Shi: Ann Mater Sci Eng, 1 (2014) 1-16.

R. Peleg, "Graphene from agricultural waste," Graphene-info, 2015. [Online]. Available: LINK [Accessed: 25-Sep-2018].

Illustrative (graphical) abstract for allotropes of carbon, their structures and uses

Downloads

Additional Files

Published

2018-10-19

How to Cite

Okwundu, Onyeka Stanislaus, Emmanuel Uche Aniekwe, and Chinaza Emmanuel Nwanno. 2018. “Unlimited Potentials of Carbon: Different Structures and Uses (a Review)”. Metallurgical and Materials Engineering 24 (3):145-71. https://doi.org/10.30544/388.

Issue

Section

Review