Optimizing the thermal gradient and the pulling speed in a thermoplastic pultrusion process of PET/E glass fibers using finite element method

  • Nataša Z Tomić Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade
  • Marija Vuksanović Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade
  • Bojan Međo University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade
  • Marko Rakin University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade
  • Dejan Trifunović University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade
  • Dušica Stojanović University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade
  • Petar Uskoković University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade
  • Radmila Jančić Heinemann University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade
  • Vesna Radojević University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade
Keywords: poly (ethylene terephthalate) – PET, pultrusion, finite element method – FEM, image analysis.

Abstract

A thermoplastic pultrusion process was examined using commercial fiber roving of PET/E glass, to determine the optimum pulling speed and optimal zonal temperatures. Finite element analysis predicted heat transfer through the commingled fibers and air in the pultrusion die. The cross-section of obtained rods was examined, and image analysis was carried out to obtain information about the degree of fiber impregnation, number of voids and uniformity of fiber distribution. Optimizing the temperature field for the pultrusion of poly (ethylene terephthalate) is of significant importance. The pulling speed has the same importance. These two parameters are closely related as evidenced by the analysis of images.

References

S. Koubaa, S. L. Corre, C. Burtin: J Reinf Plast Comp, 32 (2013) 1285–1294.

Crossref

P. Carlone, I. Baran, J. H. Hattel, G.S. Palazzo: Adv Mech Eng, 301875 (2013) 1–14.

Crossref

P. Carlone, G.S. Palazzo, R. Pasquino: Comput Math Appl, 53 (2007) 1464–1471.

Crossref

P. Akishin, E. Barkanov, A. Bondarchuk: 2nd International Conference on Innovative Materials, Structures and Technologies, Riga, Latvia, 2015, 1–10.

S. M. Haffner, K. Friedrich, P. J. Hogg, J. J. C. Busfield: Appl Compos Mater, 5 (1998) 237–255.

Crossref

C. J. Creighton, T. W. Clyne: Compos Sci Technol, 60 (2000) 525–533.

Crossref

I. Baran, C.C. Tutum, J. H. Hattel: Appl Compos Mater, 20 (2013) 639–653.

Crossref

X. L. Liua, I. G. Crouchb, Y. C. Lam: Compos Sci Technol, 60 (2000) 857-864.

Crossref

F. Samperia, C. Puglisia, R. Alicatab, G. Montaudo: Polym Degrad Stabil, 83 (2004) 3–10.

Crossref

I. Baran, C. C. Tutum, J. H. Hattel: Appl Compos Mater, 20 (2013)449–463.

Crossref

I. Baran, J. H. Hattel, C.C. Tutum: Appl Compos Mater, 20 (2013) 1247–1263.

Crossref

B. R. Suratno, L. Ye,Y. W. Mai: Compos Sci Technol, 58 (1998) 191–197.

Crossref

G. Bechtold, S. Wiedmer, K. Friedrich: J Thermoplast Compos, 15(2002) 443–465.

Crossref

Published
2018-07-02
Section
Full length research papers