DOI: https://doi.org/10.30544/338

Development of ferro-alloy hardfacing for high abrasion and low impact wear applications

Chijioke Okechukwu, Olurotimi Akintunde Dahunsi, Peter Kayode Oke, Isiaka Oluwole Oladele, Mohammed Dauda

Abstract


Extension of service lives of critical machine components subjected to wear is possible through application of hardfacing alloys. In this work, two hardfacing alloys were produced based on the mass ratios of 2: 1: 1 and 7: 1.5: 1.5 for Fe: Mn: Cr by sand and open permanent mold casting processes, respectively. XRD analysis of both samples showed the prominent presence of (Mn, Cr)23C6, (Fe, Mn, Cr)7C3, Cr3C2, Fe3C2 and Fe4C carbides. Hӓgg carbide was prevalent in the SEM microstructural analysis of the sand cast sample, while cementite dominated the permanent mold cast sample. The average hardness values, impact energies absorbed and wear volumes of the samples produced with their respective charge mass ratios are 567 HV, 30 J and 0.131 cm3 for 2: 1: 1 ratio and 592 HV, 29.5 J and 0.085 cm3 for the 7: 1.5: 1.5 ratio. For service life applications as jaws, rolls, mantles, and concaves in crushers, the latter was recommended for manual metal arc welding to low carbon steel substrate because of its higher hardness, lower wear volume and cheaper alloy cost.


Keywords


hardfacing; service life; hardness; impact energy; wear volume.

Full Text:

HTML/PDF

References


B. Khanpara, P. Rathod: International Journal of Engineering Technology, Management and Applied Sciences, 5 (2017) 132-139.

Link

K.M. Kenchireddy, C.T. Jayadeva, A. Sreenivasan: International Journal of Engineering Science and Innovative Technology, 3 (2014) 464-475.

Link

F. Haakonsen: Department of Material Science and Engineering, Norwegian University of Science and Technology, Trondheim, PhD Theses, 2009.

Link

F. Scandella, J.-M. Bonnel: Soudage Et Techniques Connexes, 71 (2017) 37-48.

Link

B. Nedeljković, V. Lazić, S. Aleksandrović, B. Kristić, M. Mutavdžić, D. Milosavljević, M. Đorđević: MJoM, 16 (2010) 77-90.

Link

K.F. Dolman: Hardfacing Ferroalloy Materials, (2015) US Patent No. 8,941,032B2.

Link

B. Maroli, S. Dizdar, S. Bengtsson, Iron based hardfacing alloys for abrasive and impact wear, Link , Accessed 28 October, 2017.

R. Goel, G. Grewal: Indian Journal of Engineering & Materials Sciences, 31 (1996) 127-130.

Link

V. Shibe, V. Chawla: Mechanica Confab, 2 (2013) 111-122.

Link

B. Digambar, D. Choudhary: International Journal of Science and Research, 3 (2014) 2400-2402.

J. Kumar, H. Singh: International Journal of Engineering Research & Technology, 04 (2015) 1190-1194.

Link

J. Huebner, P. Rutkowski, D. Kata, J. Kusiński: Arch Metall Mater, 62 (2017) 531-538.

Crossref

V. Shibe, V. Chawla: International Journal of Engineering and Technology, 9 (2017) 105-111.

Crossref

P. Singh, T. Singh, D. Singh, A. Singh: International Journal of Engineering Development and Research, 5 (2017) 744-756.

Link

K. Krauze, Ł. Bołoz, T. Wydro, K. Mucha: Mining – Informatics, Automation and Electrical Engineering, 529 (2017) 26-34.

Link

S.-W. Choi, C. Lee, T. Ha, T.-H. Kang, S.-H. Chang, In: Proceeding Underground Mining Technology, Canada, Eds: Hudyma, M., Potvin, Y., Australian Centre for Geomechanics, Perth 2017, 637-644.

Link

G.M. Evans: Welding Research Supplement, (1980) 67-75.

Link

H. Vasudev: International Journal of Advance Research, Ideas and Innovation in Technology, 1 (2014) 101-105.

Link

S. Chand, D. Madhusudhan, K. Premalatha, A. Fathima, S. Shakila: International Journal of Materials Science, 11 (2016) 17-25.

Link

C.K. Ande: Department of Materials Science and Engineering, Delft University of Technology, Delft, The Netherlands. Published Doctoral Thesis, 2013.

M. Trepczyńska-Łent: Archives of Foundry Engineering, 16 (2016) 169-174.

Link

T.A. Balliett, G. Krauss: Metallurgical Transactions A., 7A (1976) 81-86.

Crossref

Y. Prawoto: Solid Mechanics for Materials Engineers: Principles and Applications of Mesomechanics, Lulu Enterprises Inc., Morrisville, U.S.A., 2014, 13-14.

M.M. Serna, E.R.B. Jesus, E. Galegg, L.G. Martinez, H.P.S. Corrêa, J.L. Rossi. Materials Science Forum, 530 – 531 (2006) 48-52.

T. Anand, A. Bansal, A. Malham: International Journal of Innovative Research in Science and Engineering, 2 (2016) 395- 400.

B. Venkatesh, K. Striker, V.S.V. Prabhakar: Procedia Materials Science, 10 (2015) 527-532.

S. Buytoz, M.M. Yildirim: Archives of Foundry Engineering, 10 (2010) 279- 286.

P. B. Pawar, A.A. Utpat, In: Proceedings ICRISEM'16. Eds: Mattsson, M.M.K., Sharma, A.K., Andhra Pradesh, A. R. Research Publication 2016, 119-125.

K.M. Kenchi Reddy, K. Thanusa: IOSR Journal of Mechanical and Civil Engineering, 13 (2016) 72 – 79.

J. Brezinová, D. Draganovská, A. Guzanová, P. Balog, J. Viňáš: Metals, 6 (2016) 1-12.

Z. Zhang, R.A. Farrar: Welding Research Supplement, (1997) 183 – 196.

E. Surian, J. Trotti, A. Cassanelli, L.A. De Vedia: Welding Research Supplement, (1994) 45-53.

L. Qian, X. Feng, F. Zhang: Materials Transactions, 52 (2011) 1623- 1628.

Crossref


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Metall Mater Eng   ISSN: 2217-8961

Creative Commons License
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.