Development of ferro-alloy hardfacing for high abrasion and low impact wear applications
DOI:
https://doi.org/10.30544/338Keywords:
hardfacing, service life, hardness, impact energy, wear volume.Abstract
Extension of service lives of critical machine components subjected to wear is possible through application of hardfacing alloys. In this work, two hardfacing alloys were produced based on the mass ratios of 2: 1: 1 and 7: 1.5: 1.5 for Fe: Mn: Cr by sand and open permanent mold casting processes, respectively. XRD analysis of both samples showed the prominent presence of (Mn, Cr)23C6, (Fe, Mn, Cr)7C3, Cr3C2, Fe3C2 and Fe4C carbides. HÓ“gg carbide was prevalent in the SEM microstructural analysis of the sand cast sample, while cementite dominated the permanent mold cast sample. The average hardness values, impact energies absorbed and wear volumes of the samples produced with their respective charge mass ratios are 567 HV, 30 J and 0.131 cm3 for 2: 1: 1 ratio and 592 HV, 29.5 J and 0.085 cm3 for the 7: 1.5: 1.5 ratio. For service life applications as jaws, rolls, mantles, and concaves in crushers, the latter was recommended for manual metal arc welding to low carbon steel substrate because of its higher hardness, lower wear volume and cheaper alloy cost.
References
B. Khanpara, P. Rathod: International Journal of Engineering Technology, Management and Applied Sciences, 5 (2017) 132-139.
K.M. Kenchireddy, C.T. Jayadeva, A. Sreenivasan: International Journal of Engineering Science and Innovative Technology, 3 (2014) 464-475.
F. Haakonsen: Department of Material Science and Engineering, Norwegian University of Science and Technology, Trondheim, PhD Theses, 2009.
F. Scandella, J.-M. Bonnel: Soudage Et Techniques Connexes, 71 (2017) 37-48.
B. Nedeljković, V. Lazić, S. Aleksandrović, B. Kristić, M. Mutavdžić, D. Milosavljević, M. ĐorĐ‘ević: MJoM, 16 (2010) 77-90.
K.F. Dolman: Hardfacing Ferroalloy Materials, (2015) US Patent No. 8,941,032B2.
B. Maroli, S. Dizdar, S. Bengtsson, Iron based hardfacing alloys for abrasive and impact wear, Link , Accessed 28 October, 2017.
R. Goel, G. Grewal: Indian Journal of Engineering & Materials Sciences, 31 (1996) 127-130.
V. Shibe, V. Chawla: Mechanica Confab, 2 (2013) 111-122.
B. Digambar, D. Choudhary: International Journal of Science and Research, 3 (2014) 2400-2402.
J. Kumar, H. Singh: International Journal of Engineering Research & Technology, 04 (2015) 1190-1194.
J. Huebner, P. Rutkowski, D. Kata, J. Kusiński: Arch Metall Mater, 62 (2017) 531-538.
V. Shibe, V. Chawla: International Journal of Engineering and Technology, 9 (2017) 105-111.
P. Singh, T. Singh, D. Singh, A. Singh: International Journal of Engineering Development and Research, 5 (2017) 744-756.
K. Krauze, Å. BoÅ‚oz, T. Wydro, K. Mucha: Mining - Informatics, Automation and Electrical Engineering, 529 (2017) 26-34.
S.-W. Choi, C. Lee, T. Ha, T.-H. Kang, S.-H. Chang, In: Proceeding Underground Mining Technology, Canada, Eds: Hudyma, M., Potvin, Y., Australian Centre for Geomechanics, Perth 2017, 637-644.
G.M. Evans: Welding Research Supplement, (1980) 67-75.
H. Vasudev: International Journal of Advance Research, Ideas and Innovation in Technology, 1 (2014) 101-105.
S. Chand, D. Madhusudhan, K. Premalatha, A. Fathima, S. Shakila: International Journal of Materials Science, 11 (2016) 17-25.
C.K. Ande: Department of Materials Science and Engineering, Delft University of Technology, Delft, The Netherlands. Published Doctoral Thesis, 2013.
M. Trepczyńska-Åent: Archives of Foundry Engineering, 16 (2016) 169-174.
T.A. Balliett, G. Krauss: Metallurgical Transactions A., 7A (1976) 81-86.
Y. Prawoto: Solid Mechanics for Materials Engineers: Principles and Applications of Mesomechanics, Lulu Enterprises Inc., Morrisville, U.S.A., 2014, 13-14.
M.M. Serna, E.R.B. Jesus, E. Galegg, L.G. Martinez, H.P.S. Corrêa, J.L. Rossi. Materials Science Forum, 530 - 531 (2006) 48-52.
T. Anand, A. Bansal, A. Malham: International Journal of Innovative Research in Science and Engineering, 2 (2016) 395- 400.
B. Venkatesh, K. Striker, V.S.V. Prabhakar: Procedia Materials Science, 10 (2015) 527-532.
S. Buytoz, M.M. Yildirim: Archives of Foundry Engineering, 10 (2010) 279- 286.
P. B. Pawar, A.A. Utpat, In: Proceedings ICRISEM'16. Eds: Mattsson, M.M.K., Sharma, A.K., Andhra Pradesh, A. R. Research Publication 2016, 119-125.
K.M. Kenchi Reddy, K. Thanusa: IOSR Journal of Mechanical and Civil Engineering, 13 (2016) 72 - 79.
J. Brezinová, D. Draganovská, A. Guzanová, P. Balog, J. ViňáÅ¡: Metals, 6 (2016) 1-12.
Z. Zhang, R.A. Farrar: Welding Research Supplement, (1997) 183 - 196.
E. Surian, J. Trotti, A. Cassanelli, L.A. De Vedia: Welding Research Supplement, (1994) 45-53.
L. Qian, X. Feng, F. Zhang: Materials Transactions, 52 (2011) 1623- 1628.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their published articles online (e.g., in institutional repositories or on their website, social networks like ResearchGate or Academia), as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.