DOI: https://doi.org/10.30544/244319

Synthesis of Cu-CNTs nanocomposites via double pressing double sintering method

Marjan Darabi, Masoud Rajabi

Abstract


In this research, copper (Cu)-carbon nanotubes (CNTs) nanocomposites were synthesized with different weight percentages of CNTs by double pressing double sintering (DPDS) method as well as conventional sintering method. A planetary ball mill was used to disperse CNTs in Cu matrix. The milled powders were first cold pressed to 450 MPa in a uniaxial stainless-steel die with cylindrical compacts (diameter: 12 mm and height: 5 mm). The effect of CNTs content and the DPDS method on the properties of the nanocomposites were investigated. The microstructure and phase analysis of Cu-CNTs nanocomposite samples were studied by FESEM and X-Ray Diffraction. The electrical conductivity of nanocomposites was measured and compared to both sintering methods. Mechanical properties of Cu-CNTs nanocomposites were characterized using bending strength and micro-hardness measurements. Enhancements of about 32% in bending strength, 31.6% in hardness and 19.5% in electrical conductivity of Cu-1 wt.% CNTs nanocomposite synthesized by DPDS method were observed as compared to Cu-1 wt.% CNTs nanocomposites fabricated under the similar condition by a conventional sintering process.


Keywords


Cu-CNTs nano-composites, double pressing double sintering method, physical and mechanical properties.

Full Text:

HTML/PDF

References


X. Wei, H. Rui, L. Jin-Shan, F. Heng-Zhi: Trans Nonferrous Met Soc China 21 (2011) 2237-41.

LINK

P. G. Koppad, H. R. Aniruddha Ram, C. S. Ramesh, K. T. Kashyap, R. G. Koppad: J Alloys Compd, 580 (2013) 527-532.

LINK

A. K. Shukla, N. Nayan, S. V. S. N. Murty, S. C. Sharma, P. Chandran, S. R. Bakshi, K. M. George: Mater Sci. Eng, A 560 (2013) 365-371.

LINK

S. Marchisio: PhD Thesis Politecnico di Torino, (2013).

H. T. Bui, B. T. Tran, D. Q. Le, X. T. Than, D. P. Doan, N. M. Phan: Adv Nat Sci: Nanosci Nanotechnol, 2 (2011) 015006.

LINK

S. Iijima: Nature, 354(6348) (1991) 56-58.

LINK

P. V. Trinh, T. B. Trung, N. B. Thang, B. H. Thang, T. X. Tinh, D. D. Phuong, P. N. Minh: Comput Mater Sci, 49 (2010) S239-S241.

LINK

K. Rajkumar, S. Aravindan: Wear, 270 (2011) 613-621.

LINK

E. J. T. Pialago, C. W. Park: Appl Surf Sci, 308 (2014) 63-74.

LINK

W. M. Daoush, B. K. Lim, C. B. Mo, D. H. Nam, S. H. Hong: Mater Sci Eng, A 513 (2009) 247-253.

LINK

S. M. Uddin, T. Mahmud, C. Wolf, C. Glanz, I. Kolaric, C. Volkmer, H. Höller, U. Wienecke, S. Roth, H. Fecht: Compos Sci Technol, 70 (2010) 2253-2257.

LINK

K. Chu, Q. Wu, C. Jia, X. Liang, J. Nie, W. Tian, G. Gai, H. Guo: Compos Sci Technol, 70 (2010) 298-304.

LINK

Z. Sadeghian, D. Pourjafar, M. Alehoseini: Sci of Sint, 42 (2010).

LINK

G. Chai, Y. Sun, Q. Chen: J Micromech Microeng, 18 (2008) 035013.

LINK

E. Khaleghi, M. Torikachvili, M. A. Meyers, E. A. Olevsky: Mater Lett, 79 (2012) 256-258.

LINK

K. Chu, H. Guo, C. Jia, F. Yin, X. Zhang, X. Liang, H. Chen: Nanoscale Res Lett, 5 (2010) 868.

LINK

H. Li, A. Misra, Y. Zhu, Z. Horita, C. C. Koch, T. G. Holesinger: Mater Sci Eng, A 523(1) (2009) 60-64.

LINK

G. S. Cho, H. Jang, J. K. Lim, K. H. Choe, H. G. Jeong: In 18th International conference on composite materials, in Jeju Island, Korea (2011).

S. Dong, J. Zhou, D. Hui, Y. Wang, S. Zhang: Composites, Part A, 68 (2015) 356-364.

LINK

A. K. Shukla, N. Nayan, S. V. S. N. Murty, K. Mondal, S. C. Sharma, K. M. George, S. R. Bakshi: Mater Charact, 84 (2013) 58-66.

LINK

D. H. Nam, Y. K. Kim, S. I. Cha, S. H. Hong: Carbon, 50 (2012) 4809-4814.

LINK

P. Jenei, J. Gubicza, E. Y. Yoon, H. S. Kim, J. L. Lábár: Composites, Part A, 51 (2013) 71-79.

LINK

V. Koti, R. George: International Conference on Challenges and Opportunities in Mechanical Engineering, (2012) 219-224.

M. Lal, S. K. Singhal, I. Sharma, R. B. Mathur: Appl Nanosci, 3 (2013) 29-35.

LINK

J. D. B. De Mello, R. Binder, A. N. Klein, I. M. Hutchings: Powder Metall, 44 (2001) 53-61.

LINK

J. D. B. De Mello, I. M. Hutchings: Wear, 250 (2001) 435-448.

LINK

D. Milligan, U. Engstrom, J. Lingenfelter, S. Dizdar, I. Nyberg: SAE Technical Paper, 2003-01-0338 (2003).

G. Hammes, R. Schroeder, C. Binder, A. N. Klein, J. D. B. de Mello: Tribol Int, 70 (2014) 119-127.

LINK

W. B. James, R. J. Causton, J. J. Fulmer: U.S. Patent, 5,080,712 (1992).

R. M. German, Powder metallurgy and particulate materials processing: the processes, materials, products, properties, and applications, 1st ed., Princeton, NJ: Metal powder industries federation, 2005, 528.

W. M. Daoush: Powder Metall Met Ceram, 47 (2008) 531-537.

LINK

Z. W. Xue, L. D. Wang, P. T. Zhao, S. C. Xu, J. L. Qi, W. D. Fei: Mater Des, 34 (2012) 298-301.

LINK

P. Liu, D. Xu, Z. Li, B. Zhao, E. S. Kong, Y. Zhang: Microelectron Eng, 85 (2008) 1984-1987.

LINK

S. R. Hashemi, M. Ardestani, A. Nemati: Sci of Sintering, 48 (2016) 71-79.

LINK

D. Jeyasimman, K. Sivaprasad, S. Sivasankaran, R. Narayanasamy: Powder Technol, 258 (2014) 189-197.

LINK

C. B. Lin, Z. Chang, Y. H. Tung, Y. Ko: Wear, 270 (2011) 382-394.

LINK

A. Yarahmadi, M. T. Noghani, M. Rajabi: J Mater Res, 31 (2016) 3860-3868.

LINK

J. A. Rodriguez, J. M. Gallardo, E. J. Herrera: J Mater Process Technol, 56 (1996) 254-262.

LINK


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Metall Mater Eng   ISSN: 2217-8961

Creative Commons License
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.