Effect of Mg contents on the mechanical proprieties and precipitation kinetics in Al–3.3 wt.% Cu alloy

Messaoud Fatmi, A. Ouali, Amar Djemli, Tayeb Chihi, M A Ghebouli, Foudil Sahnoune, B Ghebouli, B Barka


The effect of additional Mg on the microstructure, mechanical properties, and transformation kinetics during aging in Al–3.3 wt.% Cu alloy was studied. The compositions and microstructure were examined by X-ray diffraction, Differential scanning calorimetry (DSC) and scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDS). The results show that the Mg in the Al–Cu alloy mainly precipitated to the grain boundaries during the process of transformation and formed a ternary Al2CuMg metallic compound and the rate of discontinuous precipitation reaction decreases with increasing concentration of Mg. The activation energy of crystallization was evaluated by applying the Kissinger equation.


Al-Cu-Mg alloys; Discontinuous Precipitation; Activation energy; DSC

Full Text:



G. B. Brook: Precipitation in Metals, Special Report No. 3, Fulmer Research Institute, UK, 1963.

G. B. Brook, B. A. Hatt: The Mechanisms of Phase Transfer in Crystal Solids, Manchester, Institute of Metals, London, 33, 1969, 82.

S. Schumann, H. Friedrich, Magnesium Alloys 2003, Materials Science Forum, 2003, 51: 419– 422.

L. Schlapbach, A. Zuttel: Nature, 414, 6861 (2001) 353–358. LINK

S. P. Ringer, G. R. Quan, T. Sakurai: J Mater Sci Eng A, 250 (1998) 120–126. LINK

A. Somoza, A. Dupasquier, I. J. Polmear, P. Folegati, R. Ferragut: Phys Rev B, 61 (2000) 14454-14463. LINK

S. C. Wang, M. J. Starink: Acta Materialia, 2007, 55:933–941 LINK

H. Perlitz, A. Westgren: Arkiv Kemi Mineral Geol B, 16 (1943) 1.

S. C. Wang, M. J. Starink: J Mater Sci Eng A, 386 (2004) 156–163. LINK

F. Cuisiat, P. Duval, R. Graf: Scr Metall, 18 (1984) 1051–1056. LINK

L. F. Mondolfo: Aluminum Alloys, 518 (1976).

C. Wolverton: Acta Mater, 49 (2001) 3129–3142. LINK

T. V. Shchegoleva, N. N. Buinov: Soviet physics, crystallography, 12 (1967) 552–555.

H. Liang, T. Kraft, Y. A. Chang: J Mater Sci Eng A, 292 (2000) 96–103. LINK

J. Yan, L. Chunzhi, Y. Minggao, J. C. L. Yan, Y. Minggao: J Mater Sci Lett, 9 (1990) 421–424. LINK

R. K. W. Marceau, C. Qiu, S. P. Ringer, C. R. Hutchinson: J Mater Sci Eng A, 546 (2012) 153–161. LINK

M. J. Starink: Int Mater Rev, 49 (2004) 191-226. LINK

F. Lefebvre, S. Wang, M. J. Starink, I. Sinclair: Mater Sci Forum, 396–402 (2002) 1555.


S. C. Wang, F. Lefebvre, J. L. Yan, I. Sinclair, M. J. Starink: J Mater Sci Eng A, 431 (2006) 123–136. LINK

H. Lu, P. Kadolkar, K. Nakazawa, T: Ando, C. A. Blue: Metall Mater Trans A, 38 (2007) 2379–2388. LINK

S. C. Wang, M. J. Starink, N. Gao: Scr Mater, 54 (2006) 287–291. LINK

N. Chobaut, D. Carron, J. M. Drezet: J Alloys Compd, 654 (2016) 56–62. LINK

N. Khan, M. J. Starink: Mater Sci Forum, 277 (2006) 519–521. LINK

H. E. Kissinger: Analytical Chemistry, 29 (1957) 1702-1706. LINK

J. L. Yan: Strength Modelling of Al-Cu-Mg Type Alloys, PhD Thesis. University of Southampton; 2006. LINK

J. A. Augis, J. E. Bennett: J Therm Anal Calorim, 13 (1978) 283–292. LINK

I. Manna, S. K. Pabi, W. Gust: Int Mater Rev, 46 (2001) 53–91. LINK

S. C. Wang, M. J. Starink: Int Mater Rev, 50 (2005) 193–215. LINK

D. G. Eskin: Mater Sci Forum, 396, (2002) 917-922. LINK


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Metall Mater Eng   ISSN: 2217-8961

Creative Commons License
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.