Influence of the fabrication process of copper matrix composites on cavitation erosion resistance

  • Jovana Ružić University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Materials Science, Belgrade, Serbia
  • Jelena Stašić University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Materials Science, Belgrade, Serbia
  • Dušan Božić University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Materials Science, Belgrade, Serbia
  • Marina Dojčinović University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
  • Tatjana Volkov-Husović University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
Keywords: copper-matrix composites, mechanical alloying, hot-pressing, laser-sintering, cavitation erosion, scanning electron microscopy (SEM).

Abstract

Copper matrix composites reinforced with ZrB2 particles were produced in two ways: by hot pressing (HP) and laser-sintering process. Powder mixture Cu-Zr-B was mechanically alloyed before densification processes. Variations in the microstructure of treated samples obtained during cavitation test were analyzed by scanning electron microscopy (SEM). Cavitation erosion resistance was investigated with the standard test method for cavitation erosion using vibratory apparatus. Changes in mechanical alloying duration show a strong influence on cavitation erosion resistance of Cu–ZrB2 composites regardless the number of reinforcements. Laser-sintered samples show better cavitation erosion resistance than hot-pressed samples.

References

H. Kimura, N. Muramatsu, K. Suzuki, Copper alloy and copper alloy manufacturing method, U.S. Patent Application 11/084,692, filed March 18, 2005

LINK

K. U. Kainer, Metal Matrix Composites, Weinheim: Wiley-VCH VerlagGmbH&Co. KGaA, 2006.

LINK

R. Konecna, S. Fintova, Copper and Copper Alloys: Casting, Classification and Characteristic Microstructures, Zilina, 2012.

LINK

M. Li, S.J. Zinkle: Compr Nucl Mater, 4 (2012) 667-690.

LINK

J.S. Andrus, R.G. Gordon, Contractor Report no.NAS3-23858, NASA, Florida, 1989.

J. Ruzic, J. Stasic, S. Marković, K. Raic, D. Bozic: Sci Sinter, 46 (2014) 217-224.

LINK

J. Ruzic, J. Stasic, V. Rajkovic, K. Raic, D. Bozic: Sci Eng Compos Mater, 22 (2015) 665-671.

LINK

J. Stasic, M. Trtica, V. Rajkovic, J. Ruzic, D. Bozic: Applied Surface Science, 321 (2014) 353–357.

LINK

R.T. Knapp, J.W. Daily, F.G. Hammit, Cavitation, McGraw-Hill, New York, 1970.

LINK

S. Suslick, A. Cruma, Handbook of acoustics, Wiley, New York, 1994.

C.E. Brennen, Cavitation and bubble dynamics, Oxford University Press, 1995.

F.G. Hammit, Cavitation and Multiphase Flow Phenomena, McGraw-Hill Inc., 1980.

Y. K. Zhou, F.G. Hammit: Wear, 86 (1983) 299-313.

LINK

C.J. Heathcock, B.E. Protheroe, A. Ball: Wear, 81 (1982) 311–327.

LINK

E.H.R. Wade, C.M. Preece: Metall Trans A, 9 (1978) 1299–1309.

LINK

A. Thiruvengadam: J Basic Eng, 3 (1963) 365–376.

LINK

T. Okada, Y. Iwai, A. Yamamoto: Wear, 84 (1983) 297-312.

LINK

S. Hattori, R. Ishikura: Wear, 268 (2010) 109-116.

LINK

G. Bregliozzi, A.D. Schino, S.I.U. Ahmed, J.M. Kenny, H. Haefke: Wear, 258 (2005) 503-510.

LINK

S. Hattori, T. Kitagawa: Wear, 269 (2010) 443-448.

LINK

J. Hucinska, M. Glowacka: Metall Trans A, 32A (2001) 1325-1333.

LINK

ASTM G32-92, Standard Method of Vibratory Cavitation Erosion Test, Philadelphia, 1992.

M. Dojcinovic, S. Markovic: J Serb Chem Soc, 71 (2006) 977-984.

LINK

M. Dojcinovic, T. Volkov-Husovic: Mater Lett, 62 (2008) 953-956.

LINK

M. Dojcinovic: Hem Ind, 67 (2013) 323-330.

LINK

Published
2018-01-09
Section
Research