DOI: https://doi.org/10.30544/244291

Influence of the fabrication process of copper matrix composites on cavitation erosion resistance

Jovana Ružić, Jelena Stašić, Dušan Božić, Marina Dojčinović, Tatjana Volkov-Husović

Abstract


Copper matrix composites reinforced with ZrB2 particles were produced in two ways: by hot pressing (HP) and laser-sintering process. Powder mixture Cu-Zr-B was mechanically alloyed before densification processes. Variations in the microstructure of treated samples obtained during cavitation test were analyzed by scanning electron microscopy (SEM). Cavitation erosion resistance was investigated with the standard test method for cavitation erosion using vibratory apparatus. Changes in mechanical alloying duration show a strong influence on cavitation erosion resistance of Cu–ZrB2 composites regardless the number of reinforcements. Laser-sintered samples show better cavitation erosion resistance than hot-pressed samples.


Keywords


copper-matrix composites; mechanical alloying; hot-pressing; laser-sintering; cavitation erosion; scanning electron microscopy (SEM).

Full Text:

HTML/PDF

References


H. Kimura, N. Muramatsu, K. Suzuki, Copper alloy and copper alloy manufacturing method, U.S. Patent Application 11/084,692, filed March 18, 2005

LINK

K. U. Kainer, Metal Matrix Composites, Weinheim: Wiley-VCH VerlagGmbH&Co. KGaA, 2006.

LINK

R. Konecna, S. Fintova, Copper and Copper Alloys: Casting, Classification and Characteristic Microstructures, Zilina, 2012.

LINK

M. Li, S.J. Zinkle: Compr Nucl Mater, 4 (2012) 667-690.

LINK

J.S. Andrus, R.G. Gordon, Contractor Report no.NAS3-23858, NASA, Florida, 1989.

J. Ruzic, J. Stasic, S. Marković, K. Raic, D. Bozic: Sci Sinter, 46 (2014) 217-224.

LINK

J. Ruzic, J. Stasic, V. Rajkovic, K. Raic, D. Bozic: Sci Eng Compos Mater, 22 (2015) 665-671.

LINK

J. Stasic, M. Trtica, V. Rajkovic, J. Ruzic, D. Bozic: Applied Surface Science, 321 (2014) 353–357.

LINK

R.T. Knapp, J.W. Daily, F.G. Hammit, Cavitation, McGraw-Hill, New York, 1970.

LINK

S. Suslick, A. Cruma, Handbook of acoustics, Wiley, New York, 1994.

C.E. Brennen, Cavitation and bubble dynamics, Oxford University Press, 1995.

F.G. Hammit, Cavitation and Multiphase Flow Phenomena, McGraw-Hill Inc., 1980.

Y. K. Zhou, F.G. Hammit: Wear, 86 (1983) 299-313.

LINK

C.J. Heathcock, B.E. Protheroe, A. Ball: Wear, 81 (1982) 311–327.

LINK

E.H.R. Wade, C.M. Preece: Metall Trans A, 9 (1978) 1299–1309.

LINK

A. Thiruvengadam: J Basic Eng, 3 (1963) 365–376.

LINK

T. Okada, Y. Iwai, A. Yamamoto: Wear, 84 (1983) 297-312.

LINK

S. Hattori, R. Ishikura: Wear, 268 (2010) 109-116.

LINK

G. Bregliozzi, A.D. Schino, S.I.U. Ahmed, J.M. Kenny, H. Haefke: Wear, 258 (2005) 503-510.

LINK

S. Hattori, T. Kitagawa: Wear, 269 (2010) 443-448.

LINK

J. Hucinska, M. Glowacka: Metall Trans A, 32A (2001) 1325-1333.

LINK

ASTM G32-92, Standard Method of Vibratory Cavitation Erosion Test, Philadelphia, 1992.

M. Dojcinovic, S. Markovic: J Serb Chem Soc, 71 (2006) 977-984.

LINK

M. Dojcinovic, T. Volkov-Husovic: Mater Lett, 62 (2008) 953-956.

LINK

M. Dojcinovic: Hem Ind, 67 (2013) 323-330.

LINK


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Metall Mater Eng   ISSN: 2217-8961

Creative Commons License
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.