Convective heat transfer characteristics of low Reynolds number nanofluid flow around a circular cylinder

  • Yacine Khelili Department of Mechanical Engineering, University Saad Dahlab Blida 1
  • Abderrazak Allali Department of Mechanical Engineering, University Saad Dahlab Blida 1
  • Rafik Bouakkaz Department of Mechanical Engineering, University Constantine 1, Constantine
Keywords: Nanofluid steady flow, finite volume, circular cylinder, Reynolds number, volume fraction.

Abstract

Numerical investigation of heat transfer phenomena of low Reynolds number nano-fluid flow over an isothermal cylinder is presented in this paper. Steady state governing equations (continuity, N–S and energy equations) have been solved using finite volume method. Stationary heat transfer, and flow characteristics over the cylinder have been studied for water based copper nanofluid with different solid fraction values. The effect of volume fraction of nano- particles on the fluid flow and heat transfer were investigated numerically. It was found that at a given Nusselt number, drag coefficient, re-circulation length, and pressure coefficient increase by increasing the volume fraction of nano-particles.

References

X. Wang, X. Xu, S.U.S Choi: J Thermophys Heat Transfer, 13 (1999) 474-480.

A.T. Srinivas, R.P. Bharti, R.P. Chhabra: Ind Eng Chem Res, 48 (2009) 9735-9754.

A.S. Dalkilic, N. Kayaci, A. Celen, M. Tabatabaei, O. Yildiz, W. Daungthongsuk, S. Wongwises: Curr Nanosci, 8 (2012) 949-969.

P. Anagnostopoulos, G. Iliadis: Int J Numer Methods Fluids, 22 (1996) 1061-1074.

S. Sarkar, S. Ganguly, G. Biswas: Int J Heat Mass Transfer, 55 (2012) 4783–4799.

S. Sarkar, S. Ganguly, A. Dalal: Int J Heat Mass Transfer, 59 (2013) 433-450.

M. Coutanceau, R. Bouard: J Fluid Mech79 (1977) 231–56.

V. Etminan-Farooji, E. Ebrahimnia-Bajestan, H. Niazmand, S. Wongwises: Int J Heat Mass Transf 55 (2012) 1475–1485.

B.N. Rajani, A. Kandasamy, S. Majumdar: App Math Mod, 33 (2009) 1228–1247.

M.S. Valipour, A.Z. Ghadi: Int Communication in Heat and Mass Transfer, 38 (2011) 1296-1304.

M.S. Valipour, R. Masood, S. Rashidi, M. Bovand, M. Mirhosseini: Therm Sci, 18 (2014) 1305-1314.

M.H. Fard, M.N. Esfahany, M.R. Talaie: Int Commun Heat Mass Transfer, 37 (2010) 91–97.

S. Göktepe, K. Atalik, H. Ertürk: Int J Therm Sci, 80 (2014) 83–92.

S.T. Mohyud-Din, Z.A. Zaidi, U. Khan, N. Ahmed: Aerosp Sci Technol 46 (2015) 514-522.

T. Hayat, M. Imtiaz, A. Alsaedi, M.A. Kutbi: J Magnet Magnet Mater 396 (2015) 31–37.

J.A. Khan, M. Mustafa, T. Hayat, A. Alsaedi: Int J Heat Mass Trans, 86 (2015) 158–164.

M. Hatami, D.D. Ganji: Thermal Eng, 2 (2014) 14–22.

M. Fakour, A. Vahabzadeh, D.D. Ganji, M. Hatami: J Mol Liq 204 (2015) 198–204.

S.E. Ghasemi, M. Hatami, A.K. Sarokolaie, D.D. Ganji: Phys E: Low-Dimen Syst Nanostruct, 70 (2015) 146–156.

S.E. Ghasemi, M. Hatami, GH.R. Mehdizadeh Ahangar, D.D. Ganji: J Electrostat 72 (1) (2014) 47–52.

G. Domairry, M. Hatami: J Mol Liq, 193 (2014) 37–44.

R. Gautier, D. Biau, E. Lamballais: Comput Fluids, 75 (2013) 103–111.

B. Fornberg: J Fluid Mech, 98 (1980) 819–55.

K.V. Wong, O. De Leon: Adv Mech Eng (2010) ID 519659, doi:10.1155/2010/519659.

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, H. Tyagi: J Appl Phys, 113 (2013) doi: 10.1063/1.4754271.

M.N. Linnick, H. Fasel: J Comput Phys, 204 (2005) 157–92.

H. Ding, C. Shu, Q. Cai: Comput Fluids, 36 (2007) 786–93.

Buongiorno J: J Heat Transfer, 128 (2006) 240–250.

D.A. Drew, S.L. Passman, Theory of multicomponent fluids Vol. 135, Springer Science & Business Media, Berlin, 2006.

Published
2017-03-31
Section
Articles - archived