The effect of the subcritical heat treatment on the microstructure and properties of Fe-Cr-C-V alloys

  • Mirjana Filipović
  • Željko Kamberović
  • Marija Korać
Keywords: Fe-Cr-C-V alloys, vanadium content, carbides, matrix microstructure, hardness, wear resistance, fracture toughness

Abstract

Experimental results indicate that the volume fraction of the carbide phase, carbide size and distribution had an important influence on the wear resistance of Fe-CrC-V alloys under low-stress abrasion conditions. Besides, the martensitic or martensiteaustenitic matrix microstructure more adequately reinforced the M7C3 eutectic carbides, minimizing cracking and removal during wear, than did the austenitic matrix. The secondary carbides which precipitate in the matrix regions of high chromium iron also influence the abrasion behaviour. The results of fracture toughness tests show that the dynamic fracture toughness in Fe-Cr-C-V white cast irons is determined mainly by the properties of the matrix. The high chromium iron containing 1.19 wt.% V in the as-cast condition, showed the greater dynamic fracture toughness when compared to other experimental alloys. The higher fracture toughness was attributed to strengthening during fracture, since very fine secondary carbide particles were present mainly in an austenitic matrix. In heat treated Fe-Cr-C-V alloys with varying contents of vanadium, lower Kid values were obtained, compared with as-cast alloys.

 

 

This article has been retracted. Link to the retraction

 

http://dx.doi.org/10.5937/metmateng1401001F

References

J. Dodd, J.L. Parks, Met. Forum 3 (1980) 3-27.

H. Liu, J. Wang, H. Yang, B. Shen, Mater. Sci. Eng. A 478 (2008) 324–328.

H.S. Yang, J. Wang, B.L. Shen, H.H. Liu, S.J. Gao, S.J. Huang, Wear 261 (2006) 1150-1154.

J. Wang, J. Xiong, H. Fan, H.S. Yang, H.H. Liu, B.L. Shen, J. Mater. Process. Technol. 209 (2009) 3236–3240.

J.Q. Xu, Y.Y. Chen, W. Wang, K.P. Liu, H.S. Liu, Y.D. Xiao, J. Mater. Sci. 45 (2010) 6108–6114.

J.T. Xi, Q.D. Zhou, S.H. Li, G.S. Song, Wear 162-162 (1993) 83-88.

C.P. Tabrett, I.R. Sare, M.R. Ghomashchi, Int. Mater. Rev. 41 (1996) 59-82.

M. İzciler, H. Çelik, J. Mater. Process. Techol. 105 (2000) 237-245.

I.R. Sare, Met. Technol. 6 (1979) 412-419.

K.H. Zum Gahr, D.V. Doane, Metall. Trans. A 11 (1980) 613-620.

C.K. Kim, S. Lee, J.Y. Jung, Met. Mat. Trans. A 37 (2006) 633-643.

S.B. Biner, Can. Metall. Q. 24 (1985) 155-167.

Ö.N. Doğan, Scr. Mater. 35 (1996) 163-168.

Ö.N. Doğan, J.A. Hawk, Wear 189 (1995) 136-142.

G. Powell, V. Randle, J. Mater. Sci. 32 (1997) 561-565.

R. Correa, A. Bedolla-Jacuinde, J. Zuno-Silva, E. Cardoso, I. Mejía, Wear 267 (2009) 495–504.

J.J. Coronado, Wear 270 (2011) 287–293.

Ö.N. Doğan, J.A. Hawk, G. Laird II, Met. Mat. Trans. A 28 (1997) 1315-1328.

C.P. Tabrett, I.R. Sare, Scr. Mater. 38 (1998) 1747-1753.

Ö.N. Doğan, G. Laird II, J.A. Hawk, Wear 181-183 (1995) 342-349.

C.P. Tabrett, I.R. Sare, Wear 203-204 (1997) 206-219.

S. Turenne, F. Lavallee, J. Masounave, J. Mater. Sci. 24 (1989) 3021-3028.

H. Liu, J. Wang, B. Shen, H. Yang, S. Gao, S. Huang, Mater. Design 28 (2007) 1059–1064.

A. Kootsookos, J.D. Gates, Mater. Sci. Eng. A 490 (2008) 313–318.

K.H. Zum Gahr, Z. Metallkd. 71 (1980) 103-109.

C.P. Tabrett, I.R. Sare, J. Mater. Sci. 35 (2000) 2069-2077.

A. Kootsookos, J.D. Gates, J. Mater. Sci. 39 (2004) 73-84.

J.T.H. Pearce, AFS Trans. 92 (1984) 599-622.

A. Sawamoto, K. Ōgi, K. Matsuda, AFS Trans. 94 (1986) 403-416.

S.H. Mousavi Anijdan, A. Bahrami, N. Varahram, P. Dav, Mater. Sci. Eng. A 454–455 (2007) 623–628.

C.R. Loper, H.K. Baik, AFS Trans. 97 (1989) 1001-1008.

M. Fiset, K. Peev, M. Radulovic, J. Mater. Sci. Lett. 12 (1993) 615-617.

A. Bedolla-Jacuinde, Int. J. Cast Metals Res. 13 (2001) 343-361.

J.D.B. De Mello, M. Durand-Charre, T. Mathia, Mater. Sci. Eng. A 78 (1986) 127-134.

M. Radulovic, M. Fiset, K. Peev, M. Tomovic, J. Mater. Sci. 29 (1994) 5085-5094.

A. Bedolla-Jacuinde, L. Arias, B. Hernández, J. Mater. Eng. Perform. 12 (2003) 371-382.

A. Wiengmoon, T. Chairuangsri, A. Brown, R. Brydson, D.V. Edmonds, J.T.H.Pearce, Acta Mater. 53 (2005) 4143-4154.

J. Wang, R.L. Zuo, Z.P. Sun, C. Li, K.K. Liu, H.S. Yang, B.L. Shen, S.J. Huang,Mater. Charact. 55 (2005) 234-240.

M. Filipovic, E. Romhanji, Z. Kamberovic, M. Korac, Mater. Trans. 50 (2009) 2488-2492.

M. Filipovic, Z. Kamberovic, M. Korac, Mater. Trans. 52 (2011) 386-390.

X. Zhi, J. Xing, Y. Gao, H Fu, J. Peng, B. Xiao, Mater. Sci. Eng. A 487 (2008) 171–179.

X. Wu, J. Xing, H. Fu, X. Zhi, Mater. Sci. Eng. A 457 (2007) 180–185.

J. Durnin and K. A. Ridal, J. Iron Steel Inst. 206 (1968) 60-67.

C. Kim, J. Heat. Treat. 1 (1979) 43-51.

ASTM G65-80. Standard practice for conducting dry sand/rubber wheel abrasion tests. American Society for Testing and Materials. Philadelphia; 1980.

ASTM E-399-90. Standard test method for plane-strain fracture toughness of metallic materials. American Society for Testing and Materials. Philadelphia;1991.

Qiu H, Enoki M, Hiraoka K, Kishi T, Eng. Fract. Mech. 72 (2005) 1624-1633.

Prasad K, Kamat SV, J Alloys. Compd. 491 (2010) 237-241.

Published
2014-03-31
Section
Articles - archived