Effects of recrystallization annealing on mechanical properties of cold-rolled PdNi5 wires

  • Aleksandra Ivanović
  • Biserka Trumić
  • Svetlana Ivanov
  • Saša Marjanović
  • Silvana Dimitrijević
  • Vesna Marjanović
Keywords: PdNi5 strips, Recrystallization, Mechanical properties, Cold deformation


The aim of this investigation was to determine the influence of the recrystallization temperature and recrystallization time on the microstructure and mechanical properties of the PdNi5 alloy subjected to cold deformation in the process of rolling at a constant deformation degree. The samples of PdNi5 alloy were recrystallization annealed within the temperature range of 200-1000ºC and annealing time range of 20-45 min after cold rolling with deformation degree of 97%. The tensile test was carried out using universal material testing machine. The hardness was also measured on the combined device for measuring Vickers and Brinell hardness. Metallographic observations were performed on an optical microscope. The analysis of the results of investigations regarding the microstructural changes and corresponding mechanical properties of cold-rolled PdNi5 strips shows that annealing temperature of 500ºC was sufficient to activate the energy for various recrystallization processes causing a change in the mechanical properties of cold-rolled PdNi5 strips. The annealing time, at constant annealing temperature, almost did not affect a recrystallization temperature and the mechanical properties of the cold-rolled PdNi5 strips.


http://resource.npl.co.uk/mtdata/phdiagrams/ nipd.htm, accessed in January 2016.

W. Lin and J. E. Spruiell, Acta. Metall. 19(5) (1971) 451–561.

A. A. Katsnel’son, I.I. Popova, Ukr. Fiz. Zh. (Russ. Ed.) 14(10) (1969) 1651–1654.

P. V. Petrenko, A. V. Gavrilyuk, N. P. Kulish, N. A. Mel’nikova and Yu. E. Grabovskii, The Phys. of Metals and Metallogr., 108(5) (2009) 449-454.

S. Helfensteyn, J. Luyten, L. Feyaerts, C. Creemers, Appl. Surf. Sci. (212–213) (2003) 844–849.

A. Ivanović, B. Trumić, S. Ivanov, S. Marjanović, Hem.Ind. 68(5) (2014) 597-603.

H. Takahashi, S. Fukatsu, S. Tsunashima, S. Uchiyama, J. Magn. Magn. Mater. 104–107(3) (1992) 1831–1832.

A Tari, B. R. Coles, J. Phys. F: Met. Phys. 1(6) (1971) L69.

L. R Bidwell, R Speiser, Acta Metall. 13(2) (1965) 61–70.

A. V. Evteev, E. V. Levchenko, I. V. Belova, G. E. Murch, Defect and Diffusion Forum, 277 (2008) 207-212.

M. Kasprzak, D. Baither and G. Schmitz, Acta Mater. 59(4) (2011) 1734–1741.

P. G. Boswell, Platinum Met. Rev. 26(l) (1982) 16-19.

Z. Liu, X. Zhang, L.Hong, Electrochem. Commun., 11(4) (2009) 925 -928.

C. Qiu, R. Shang, Y. Xie, Y. Bu, C.Li, H. Ma, Mater. Chem. Phys. 120(2-3) (2010) 323-330.

C. Du, M. Chen, W. Wang, G. Yin, P. Shi, Electrochem. Commun., 12(6) (2010) 843-846.

G. Raykhtsaum, L.Garner, Platinum Met. Rev., 57(3) (2013) 202-213.

A. T. Ivanovic, B. T. Trumic, N. S. Vukovic, S. R. Marjanovic, B. R. Marjanovic, J. Optoelectron. Adv. Mater. 16(7-8) (2014) 925 – 932. [18]B. Perovic, Physical Metallurgy, University of Montenegro, Faculty of Metallurgy and Technology, Podgorica, 1997.

A. Ivanović, B. Trumić, S. Ivanov, S. Marjanović, S. Dimitrijević, V. Marjanović, Proceedings, Metallurgical & MaterialsEngineering Congressof South-East Europe (MME SEE). Eds: M. Korać, 03.-05. 06. 2015, Belgrade, Serbia, pp. 231-237

Articles - archived