Numerical simulation of temperature field in the vertical Bridgman method crystal growth

Authors

  • Srdjan Perišić
  • Ahmed Ali Awhida
  • Vesna Radojević
  • Dejan Davidović
  • Dejan Trifunović
  • Radmila Jančić Heinemann
  • Radoslav Aleksić

Keywords:

mathematical model, temperature field, finite element method

Abstract

The mathematical model for heat transfer during the Bridgeman crystal growth, using the finite element method and the obtained result аre presented. Some modifications to the method were introduced in order to incorporate the data obtained experimentally. Solving the model enabled comparison of the experimental and numerical data and to obtain sufficient accuracy. The model was used to calculate the temperature gradient in the sample and the calculated gradient was in accordance with the observed crystal growth regime.

References

J. W. Ruter, B. Chalmers, Can. J. Phys. 31 (1953) 15.

M. Arivanandhan, K. Sankaranarayanan, K. Ramamoorthy, C. Sanjeeviraja, P. Ramasamy, Cryst. Res. Technol. 39 (2004) 692 - 698.

Joachim Rudolph, Jan Winkler, Frank Woittennek, Flatness Based Approach to a Heat Conduction Problem in a Crystal Growth Process, Springer-Verlag Berlin Heidelberg, 2005.

Roman Sheinman, Feedback control of Bridgman crystallization, MSc thesis, Haifa, 2004.

W.R. Rosch, A.L. Fripp, W.J. Debnam, T.K. Pendergrass, J. Cryst. Growth. 174 (1997) 139-152.

C. Stelian, J. L. Plaza, F. Barvinschi, T. Duffar, J. L. Santailler, E. Dieguez, I. Nicoara, J. Optoelectron. Adv. M. 2 (2000) 481-486.

B. Krishan, P.B. Barman, G.S. Mudahar, N.P. Singh, Mater Lett 58 (2004) 1441-1445.

H.J. Scheel, P. Capper, Crystal Growth Technology, Wiley, New York 2008.

M. Arivanandhan, K. Sankaranarayanan, K. Ramamoorthy, C. Sanjeeviraja, P. Ramasamy,Cryst Res Technol, 39 (2004) 692-698.

H. Chen, C. Ge, R.Li, J. Wang, C. Wu, X. Zeng, Bull. Mater. Sci. 28 (2005) 555-560.

M. Jitpukdee, D. Wongsawaeng , S Punnachaiya, J. Nucl. Sci. Technol. 48 (2011) 1250-1255.

T. Meurer, K. Graichen, E.D. Gilles, Control and Observer Design, Springer, Berlin, 2005.

W.R. Roch, A.L. Fripp, W.J. Debnam, T.K. Pendergrass, J. Cryst. Growth. 174 (1997) 139-152.

C. Stelian, J.L. Plaza, F. Barvinschi, T. Duffar, J.L. Santailler, E. Dieguez, I. Nicoara, J. Optoelectron. Adv. M. 2 (2000) 481-486.

A. L. Coulet, B. Billia, L. Capella, J. Cryst. Growth. 51 (1981) 106.

B. Billia, H. Ahdout, L. Capella, J. Cryst. Growth. 51 (1981) 81.

J. S. Kirkaldy, Scripta metall. 14 (1980) 739.

D. Venugopalan, J. S. Kirkaldy, Scripta metall. 16 (1982) 1183.

D. Venugopalan, J. S. Kirkaldy, Acta metall. 32 (1984) 893.

M. H. Burden, J. D. Hunt, J. Cryst. Growth. 22 (1974) 99.

M. H. Burden, J. D. Hunt, J. Cryst. Growth. 22 (1974) 109.

A. M. Nazar, M. Prates, J. Cryst. Growth. 55 (1981) 317.

L. Kuchar, J. Drapala, Hutnicke listy 7 (1985) 498.

http://www.mathworks.com/help/pde/examples/heat-distribution-in-a-circular-cylindrical-rod.html

Downloads

Published

2015-03-31

How to Cite

Perišić, Srdjan, Ahmed Ali Awhida, Vesna Radojević, Dejan Davidović, Dejan Trifunović, Radmila Jančić Heinemann, and Radoslav Aleksić. 2015. “Numerical Simulation of Temperature Field in the Vertical Bridgman Method Crystal Growth”. Metallurgical and Materials Engineering 21 (1):25-34. https://metall-mater-eng.com/index.php/home/article/view/130.

Issue

Section

Articles - archived