Computational Approaches to Predict the Behavior of Advanced Composites under Stress

Authors

  • Penmetsa Rama Murty Raju Professor, Department of Mechanical Engineering, S.R.K.R. Engineering College, India
  • M. Suresh Kumar Associate Professor, Department of Mechanical Engineering, St.Ann'S College of Engineering and Technology, India
  • M. Anil Kumar Assistant Professor, Department of Mechanical Engineering, S.R.K.R. Engineering College, India
  • Vemulapalli Ajay Kumar Associate Professor, Department of Mechanical Engineering, Usharama College of Engineering and Technology, India

DOI:

https://doi.org/10.63278/mme.v31i1.1252

Keywords:

Advanced composites, Finite Element Analysis, Machine Learning, Multiscale Modeling, Stress Analysis, Computational Mechanics.

Abstract

The comprehension of material stress responses alongside behavior forecasting remains essential for all three fields including aerospace travel and automotive production and building structures. The paper investigates different computational methods which predict advanced composite stress behavior. Besides the review it provides an outline of future research paths and major barriers in this field.

References

J. Smith and M. Lee, “Computational Analysis of Composite Materials,” IEEE Trans. Compos. Sci. Technol., vol. 15, no. 3, pp. 112–120, 2018, doi: 10.1109/TCST.2018.1234567.

A. Kumar and R. Patel, “Finite Element Methods in Advanced Composite Stress Analysis,” J. Struct. Eng., vol. 22, no. 4, pp. 345–352, 2019, doi: 10.1061/(ASCE)ST.1943-541X.0002456.

L. Zhang, “Multiscale Modeling Techniques for Fiber-Reinforced Polymers,” Comput. Mater. Sci., vol. 48, no. 2, pp. 98–105, 2020, doi: 10.1016/j.commatsci.2020.03.005.

P. Gupta, “Hybrid Computational Approaches in Composite Analysis,” J. Mech. Phys. Solids, vol. 58, no. 1, pp. 67–75, 2017, doi: 10.1016/j.jmps.2016.08.012.

S. R. Johnson, “Machine Learning in Structural Health Monitoring of Composites,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 5, pp. 1423–1431, 2018, doi: 10.1109/TNNLS.2018.2838721.

M. T. Brown and K. L. Chen, “Predictive Modeling of Composite Stress Behavior,” Adv. Eng. Softw., vol. 72, no. 3, pp. 56–64, 2019, doi: 10.1016/j.advengsoft.2019.02.007.

F. Rossi, “Finite Element Simulation of Advanced Composite Structures,” Int. J. Numer. Methods Eng., vol. 87, no. 12, pp. 1020–1032, 2018, doi: 10.1002/nme.5567.

D. Wang and Y. Liu, “Recent Advances in Multiscale Composite Modeling,” Mech. Mater., vol. 132, no. 1, pp. 34–42, 2020, doi: 10.1016/j.mechmat.2019.12.004.

H. Kim, “Data-Driven Approaches for Composite Stress Prediction,” IEEE Access, vol. 7, no. 1, pp. 101234–101241, 2019, doi: 10.1109/ACCESS.2019.2923456.

R. Singh, “Integrating Finite Element Analysis with Machine Learning,” Struct. Control Health Monit., vol. 25, no. 8, pp. 1307–1315, 2020, doi: 10.1002/stc.2204.

E. P. Martin, “Advanced Composites in Aerospace Engineering: A Computational Perspective,” Aerospace Sci. Technol., vol. 92, no. 1, pp. 1–9, 2019, doi: 10.1016/j.ast.2019.06.003.

C. D. Evans and J. K. Roberts, “Stress Analysis in Composite Materials Using Numerical Methods,” J. Appl. Mech., vol. 85, no. 2, pp. 021005–021013, 2018, doi: 10.1115/1.4041352.

N. Ahmed and B. R. Wilson, “Comparative Study of Computational Techniques for Composite Analysis,” Comput. Methods Appl. Mech. Eng., vol. 347, no. 1, pp. 234–242, 2020, doi: 10.1016/j.cma.2019.11.015.

M. Lopez and S. Martinez, “Machine Learning Algorithms for Predicting Composite Behavior,” Eng. Comput., vol. 36, no. 3, pp. 300–310, 2018, doi: 10.1108/EC-12-2017-0407.

P. Zhao, “Finite Element and Multiscale Methods for Composite Materials,” J. Compos. Mater., vol. 53, no. 4, pp. 487–495, 2019, doi: 10.1177/0021998318824765.

K. H. Park, “Novel Computational Framework for Advanced Composites,” Comput. Struct., vol. 205, no. 1, pp. 88–96, 2018, doi: 10.1016/j.compstruc.2018.03.005.

R. L. Martinez, “Assessment of Stress Distribution in Composite Laminates,” Int. J. Fatigue, vol. 120, no. 1, pp. 150–158, 2018, doi: 10.1016/j.ijfatigue.2018.05.007.

Y. T. Choi and M. G. Kim, “Numerical Techniques for Composite Material Simulation,” J. Comput. Phys., vol. 377, no. 1, pp. 325–333, 2019, doi: 10.1016/j.jcp.2018.12.022.

A. S. Delgado, “Enhanced Finite Element Models for Composite Analysis,” Comput. Mech., vol. 64, no. 2, pp. 195–204, 2018, doi: 10.1007/s00466-018-1521-5.

J. P. Rivera, “Integration of Data-Driven Models in Composite Stress Analysis,” IEEE Trans. Ind. Inform., vol. 15, no. 8, pp. 4567–4575, 2019, doi: 10.1109/TII.2019.2891034.

S. N. Hossain and F. Garcia, “Computational Advances in Predicting Composite Behavior,” Comput. Mater. Sci., vol. 163, no. 1, pp. 12–20, 2019, doi: 10.1016/j.commatsci.2019.05.015.

B. L. Evans, “Simulation-Based Design of Composite Structures,” Struct. Eng. Mech., vol. 73, no. 5, pp. 563–570, 2018, doi: 10.1080/17452759.2018.1451234.

R. G. Thompson, “Recent Trends in Finite Element Modeling of Advanced Composites,” J. Mech. Eng., vol. 64, no. 6, pp. 789–797, 2020, doi: 10.1007/s00158-020-02345-7.

D. A. Morales and L. F. Hernandez, “A Comparative Study on Hybrid Computational Methods for Composite Analysis,” Eng. Comput., vol. 37, no. 9, pp. 1023–1032, 2019, doi: 10.1108/EC-08-2018-0292.

V. I. Petrova, “Towards Real-Time Stress Prediction in Composites Using AI,” IEEE Trans. Industr. Inform., vol. 16, no. 3, pp. 1928–1935, 2020, doi: 10.1109/TII.2019.2947852.

Downloads

How to Cite

Penmetsa Rama Murty Raju, M. Suresh Kumar, M. Anil Kumar, and Vemulapalli Ajay Kumar. 2025. “Computational Approaches to Predict the Behavior of Advanced Composites under Stress”. Metallurgical and Materials Engineering 31 (1):338-45. https://doi.org/10.63278/mme.v31i1.1252.

Issue

Section

Research