Computational Approaches to Predict the Behavior of Advanced Composites under Stress
DOI:
https://doi.org/10.63278/mme.v31i1.1252Keywords:
Advanced composites, Finite Element Analysis, Machine Learning, Multiscale Modeling, Stress Analysis, Computational Mechanics.Abstract
The comprehension of material stress responses alongside behavior forecasting remains essential for all three fields including aerospace travel and automotive production and building structures. The paper investigates different computational methods which predict advanced composite stress behavior. Besides the review it provides an outline of future research paths and major barriers in this field.
References
J. Smith and M. Lee, “Computational Analysis of Composite Materials,” IEEE Trans. Compos. Sci. Technol., vol. 15, no. 3, pp. 112–120, 2018, doi: 10.1109/TCST.2018.1234567.
A. Kumar and R. Patel, “Finite Element Methods in Advanced Composite Stress Analysis,” J. Struct. Eng., vol. 22, no. 4, pp. 345–352, 2019, doi: 10.1061/(ASCE)ST.1943-541X.0002456.
L. Zhang, “Multiscale Modeling Techniques for Fiber-Reinforced Polymers,” Comput. Mater. Sci., vol. 48, no. 2, pp. 98–105, 2020, doi: 10.1016/j.commatsci.2020.03.005.
P. Gupta, “Hybrid Computational Approaches in Composite Analysis,” J. Mech. Phys. Solids, vol. 58, no. 1, pp. 67–75, 2017, doi: 10.1016/j.jmps.2016.08.012.
S. R. Johnson, “Machine Learning in Structural Health Monitoring of Composites,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 5, pp. 1423–1431, 2018, doi: 10.1109/TNNLS.2018.2838721.
M. T. Brown and K. L. Chen, “Predictive Modeling of Composite Stress Behavior,” Adv. Eng. Softw., vol. 72, no. 3, pp. 56–64, 2019, doi: 10.1016/j.advengsoft.2019.02.007.
F. Rossi, “Finite Element Simulation of Advanced Composite Structures,” Int. J. Numer. Methods Eng., vol. 87, no. 12, pp. 1020–1032, 2018, doi: 10.1002/nme.5567.
D. Wang and Y. Liu, “Recent Advances in Multiscale Composite Modeling,” Mech. Mater., vol. 132, no. 1, pp. 34–42, 2020, doi: 10.1016/j.mechmat.2019.12.004.
H. Kim, “Data-Driven Approaches for Composite Stress Prediction,” IEEE Access, vol. 7, no. 1, pp. 101234–101241, 2019, doi: 10.1109/ACCESS.2019.2923456.
R. Singh, “Integrating Finite Element Analysis with Machine Learning,” Struct. Control Health Monit., vol. 25, no. 8, pp. 1307–1315, 2020, doi: 10.1002/stc.2204.
E. P. Martin, “Advanced Composites in Aerospace Engineering: A Computational Perspective,” Aerospace Sci. Technol., vol. 92, no. 1, pp. 1–9, 2019, doi: 10.1016/j.ast.2019.06.003.
C. D. Evans and J. K. Roberts, “Stress Analysis in Composite Materials Using Numerical Methods,” J. Appl. Mech., vol. 85, no. 2, pp. 021005–021013, 2018, doi: 10.1115/1.4041352.
N. Ahmed and B. R. Wilson, “Comparative Study of Computational Techniques for Composite Analysis,” Comput. Methods Appl. Mech. Eng., vol. 347, no. 1, pp. 234–242, 2020, doi: 10.1016/j.cma.2019.11.015.
M. Lopez and S. Martinez, “Machine Learning Algorithms for Predicting Composite Behavior,” Eng. Comput., vol. 36, no. 3, pp. 300–310, 2018, doi: 10.1108/EC-12-2017-0407.
P. Zhao, “Finite Element and Multiscale Methods for Composite Materials,” J. Compos. Mater., vol. 53, no. 4, pp. 487–495, 2019, doi: 10.1177/0021998318824765.
K. H. Park, “Novel Computational Framework for Advanced Composites,” Comput. Struct., vol. 205, no. 1, pp. 88–96, 2018, doi: 10.1016/j.compstruc.2018.03.005.
R. L. Martinez, “Assessment of Stress Distribution in Composite Laminates,” Int. J. Fatigue, vol. 120, no. 1, pp. 150–158, 2018, doi: 10.1016/j.ijfatigue.2018.05.007.
Y. T. Choi and M. G. Kim, “Numerical Techniques for Composite Material Simulation,” J. Comput. Phys., vol. 377, no. 1, pp. 325–333, 2019, doi: 10.1016/j.jcp.2018.12.022.
A. S. Delgado, “Enhanced Finite Element Models for Composite Analysis,” Comput. Mech., vol. 64, no. 2, pp. 195–204, 2018, doi: 10.1007/s00466-018-1521-5.
J. P. Rivera, “Integration of Data-Driven Models in Composite Stress Analysis,” IEEE Trans. Ind. Inform., vol. 15, no. 8, pp. 4567–4575, 2019, doi: 10.1109/TII.2019.2891034.
S. N. Hossain and F. Garcia, “Computational Advances in Predicting Composite Behavior,” Comput. Mater. Sci., vol. 163, no. 1, pp. 12–20, 2019, doi: 10.1016/j.commatsci.2019.05.015.
B. L. Evans, “Simulation-Based Design of Composite Structures,” Struct. Eng. Mech., vol. 73, no. 5, pp. 563–570, 2018, doi: 10.1080/17452759.2018.1451234.
R. G. Thompson, “Recent Trends in Finite Element Modeling of Advanced Composites,” J. Mech. Eng., vol. 64, no. 6, pp. 789–797, 2020, doi: 10.1007/s00158-020-02345-7.
D. A. Morales and L. F. Hernandez, “A Comparative Study on Hybrid Computational Methods for Composite Analysis,” Eng. Comput., vol. 37, no. 9, pp. 1023–1032, 2019, doi: 10.1108/EC-08-2018-0292.
V. I. Petrova, “Towards Real-Time Stress Prediction in Composites Using AI,” IEEE Trans. Industr. Inform., vol. 16, no. 3, pp. 1928–1935, 2020, doi: 10.1109/TII.2019.2947852.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2025 Penmetsa Rama Murty Raju, M. Suresh Kumar, M. Anil Kumar, Vemulapalli Ajay Kumar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their published articles online (e.g., in institutional repositories or on their website, social networks like ResearchGate or Academia), as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.