A Review of the Fatigue Behaviour of Laser Powder Bed Fusion Ti6Al4V
DOI:
https://doi.org/10.63278/mme.v31i1.1245Keywords:
Fatigue behaviour; LPBF Ti6Al4V; Additive manufacturing; Fatigue life; Fracture surface.Abstract
Fatigue in metals has been recognized since the early 1800s, after several cases of fatigue failure were reported. It is described as a material's deterioration brought on by repeated loading that causes progressive, localised structural damage. Fatigue is a problem that affects engineering components that are under the action of cyclic stresses. In these components fatigue failure always occurs at significantly much lower stresses than the yield strength of material. Unlike in the early days of failure, the causes of failure in engineering structures have been studied thoroughly and are nowadays well known. The theory of fatigue allows engineers to design components with the aim of minimizing the possibility of failure. However, it is not possible to guarantee that fatigue failure will not occur, and therefore, the recourse to damage tolerance approach in design for cyclically loaded components. The last few years have seen a pickup of the various additive manufacturing (AM) technologies. This is because AM leads to shorter manufacturing times and is capable of producing parts with complicated geometries and assemblies of interconnected parts. Unlike traditional manufacturing methods, AM does not require post-machining processes thus leading to minimal wastage of material. The microstructures of additively manufactured parts are finer than those of traditional methods, and the strength is higher on the AM parts, but ductility is lower. As in traditionally manufactured metallic components, fatigue failure in parts manufactured by laser powder bed fusion (LPBF) occurs, mainly due to inherent defects such as residual stresses, internal flaws and surface roughness. An insight into the fatigue behaviour of the LPBF Ti6Al4V alloy is presented here.
References
T. H. Becker, M. Beck, and C. Scheffer, ‘14 th International RAPDASA conference held at the Central University of Technology in South Africa in 2013’, 2013.
A. Sterling, N. Shamsaei, B. Torries, and S. M. Thompson, ‘Fatigue Behaviour of Additively Manufactured Ti-6Al-4 v’, in Procedia Engineering, Elsevier Ltd, 2015, pp. 576–589. doi: 10.1016/j.proeng.2015.12.632.
D. Bourell et al., ‘Materials for additive manufacturing’, CIRP Ann Manuf Technol, vol. 66, no. 2, pp. 659–681, 2017, doi: 10.1016/j.cirp.2017.05.009.
R. K. Nalla, B. L. Boyce, J. P. Campbell, J. O. Peters, and R. O. Ritchie, ‘Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal vs. lamellar structures’, in Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Minerals, Metals and Materials Society, 2002, pp. 899–918. doi: 10.1007/s11661-002-0160-z.
A. Dehghanghadikolaei and B. Fotovvati, ‘Additive Manufacturing Methods A Brief Overview’, 2018. [Online]. Available: https://www.researchgate.net/publication/327701079
N. Shamsaei and J. Simsiriwong, ‘Fatigue behaviour of additively-manufactured metallic parts’, in Procedia Structural Integrity, Elsevier B.V., 2017, pp. 3–10. doi: 10.1016/j.prostr.2017.11.053.
J. Günther et al., ‘Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime’, Int J Fatigue, vol. 94, pp. 236–245, Jan. 2017, doi: 10.1016/j.ijfatigue.2016.05.018.
S. Liu and Y. C. Shin, ‘Additive manufacturing of Ti6Al4V alloy: A review’, Mater Des, vol. 164, p. 107552, Feb. 2019, doi: 10.1016/J.MATDES.2018.107552.
J. R. Zhao, F. Y. Hung, T. S. Lui, and Y. L. Wu, ‘The relationship of fracture mechanism between high temperature tensile mechanical properties and particle erosion resistance of selective laser melting Ti-6al-4v alloy’, Metals (Basel), vol. 9, no. 5, May 2019, doi: 10.3390/met9050501.
C. C. Murgau, ‘Microstructure Model for Ti-6Al-4V used in Simulation of Additive Manufacturing Material Mechanics’, Lulea University of Technology, Lulea, 2016.
F.C. Campbell, Elements of Metallurgy and Engineering Alloys. ASM International, 2008.
H. E. Boyer, Atlas of Fatigue Curves. Ohio: ASM lnternatlonal, 1986. [Online]. Available: www.asminternational.org
Y. Lee, J. Pan, R. Hathway, and M. Barkey, Fatigue Testing and Analysis (Theory and Practice). Burlington: Elsevier Butterworth Heinemann, 200, 2005.
A. Mouritz, Introduction to Aerospace Material. Woodhead Pub, 2012.
A. J. Belinky, ‘High cycle compressive fatigue of unidirectional glass/polyester performed at high frequency’, Montana, 1994.
K. Lietaert, A. Cutolo, D. Boey, and B. Van Hooreweder, ‘Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load’, Sci Rep, vol. 8, no. 1, Dec. 2018, doi: 10.1038/s41598-018-23414-2.
D.R. Moss and M. Basic, Pressure vessel design manual, Fourth edition: Chapter 8 on high pressure vessel. 2010.
G.E. Dieter, Metallurgy and Metallurgical Engineering. New York: McGRAW-HILL BOOK COMPANY, 1961.
F.C. Campbell, Fatigue and Fracture. Ohio: ASM International, 2012.
H. Gong, H. K. Rafi, K. Rafi, T. Starr, and B. Stucker, ‘Effect of defects on fatigue tests of as-built TI-6AL-4V parts fabricated by selective laser melting’, 2012. [Online]. Available: https://www.researchgate.net/publication/279687860
S. Glodez, J. Flasker, and Z. Ren, ‘Crack initiation and crack propagation in the contact area of two cylinders’, 1996. [Online]. Available: www.witpress.com,
A. Blake, Handbook of Mechanics, Material and Structures. Arizona: A Wiley-Interscience Publication, 1985.
G. Totten, ‘Fatigue Crack Propagation’, Advanced Materials & Processes, 2008, [Online]. Available: www.asminternational.org
J. William D. Callister and David Rethwisch, Material Science and Engineering - An introduction, 10th ed. John Wiley & Sons, Inc, 2018.
M. Pedersen, ‘Introduction to Metal Fatigue-Concepts and Engineering Approaches’, 2018, doi: 10.13140/RG.2.2.25216.28163.
P. Edwards and M. Ramulu, ‘Fatigue performance evaluation of selective laser melted Ti–6Al–4V’, Materials Science and Engineering: A, vol. 598, pp. 327–337, Mar. 2014, doi: 10.1016/J.MSEA.2014.01.041.
M. Benedetti, V. Fontanari, M. Bandini, F. Zanini, and S. Carmignato, ‘Low- and high-cycle fatigue resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: Mean stress and defect sensitivity’, Int J Fatigue, vol. 107, pp. 96–109, Feb. 2018, doi: 10.1016/j.ijfatigue.2017.10.021.
E. Wycisk, S. Siddique, D. Herzog, F. Walther, and C. Emmelmann, ‘Fatigue performance of laser additive manufactured Ti–6Al–4V in very high cycle fatigue regime up to 109 cycles’, Front Mater, vol. 2, Dec. 2015, doi: 10.3389/fmats.2015.00072.
A. Cutolo, C. Elangeswaran, and B. Van Hooreweder, ‘On the Effect of the Stress Ratio on Fatigue Properties of Ti-6Al-4V Produced by Laser Powder Bed Fusion’, Material Design & Processing Communications, vol. 2022, pp. 1–7, Feb. 2022, doi: 10.1155/2022/3530603.
S. Hosseini, ‘Fatigue of Ti-6Al-4V’, in Biomedical Engineering - Technical Applications in Medicine, InTech, 2012. doi: 10.5772/45753.
S. Baragetti, ‘Notch corrosion fatigue behavior of Ti-6Al-4V’, Materials, vol. 7, no. 6, pp. 4349–4366, 2014, doi: 10.3390/ma7064349.
W. Ziaja and A. Kawalec, ‘Dwell Fatigue Behavior of Two-Phase Ti-6Al-4V Alloy at Moderate Temperature’, JOM, vol. 74, no. 10, pp. 3745–3751, Oct. 2022, doi: 10.1007/s11837-022-05461-3.
Z. Jiao, X. Wu, H. Yu, R. Xu, and L. Wu, ‘High cycle fatigue behavior of a selective laser melted Ti6Al4V alloy: Anisotropy, defects effect and life prediction’, Int J Fatigue, vol. 167, Feb. 2023, doi: 10.1016/j.ijfatigue.2022.107252.
R.O. Ritchie, D.L. Davidson, B.L. Boyce, J.P. Campbell, and O. Roder, ‘High-cycle fatigue of Ti-6Al-4V’, Fatigue Fracture Engineering Material Structure, vol. 22, pp. 621–631, 1999.
M. Janeček et al., ‘The very high cycle fatigue behaviour of Ti-6Al-4V alloy’, in Acta Physica Polonica A, Polish Academy of Sciences, Oct. 2015, pp. 497–502. doi: 10.12693/APhysPolA.128.497.
Y. ZHU, J. XIONG, Z. LV, and Y. ZHAO, ‘Testing and evaluation for fatigue crack propagation of Ti-6Al-4V/ELI and 7050-T7452 alloys at high temperatures’, Chinese Journal of Aeronautics, vol. 31, no. 6, pp. 1388–1398, Jun. 2018, doi: 10.1016/j.cja.2017.06.013.
C. L. Walters, ‘The Effect of Low Temperatures on the Fatigue of High-strength Structural Grade Steels’, Procedia Materials Science, vol. 3, pp. 209–214, 2014, doi: 10.1016/j.mspro.2014.06.037.
K. Tokaji, ‘High cycle fatigue behaviour of Ti–6Al–4V alloy at elevated temperatures’, Scr Mater, vol. 54, no. 12, pp. 2143–2148, Jun. 2006, doi: 10.1016/J.SCRIPTAMAT.2006.02.043.
Z. H. Jiao, R. D. Xu, H. C. Yu, and X. R. Wu, ‘Evaluation on Tensile and Fatigue Crack Growth Performances of Ti6Al4V Alloy Produced by Selective Laser Melting’, in Procedia Structural Integrity, Elsevier B.V., 2017, pp. 124–132. doi: 10.1016/j.prostr.2017.11.069.
G. Pantazopoulos, ‘A Short Review on Fracture Mechanisms of Mechanical Components Operated under Industrial Process Conditions: Fractographic Analysis and Selected Prevention Strategies’, Metals (Basel), vol. 9, no. 2, p. 148, Jan. 2019, doi: 10.3390/met9020148.
N. K. Arakere, T. Goswami, J. Krohn, and N. Ramachandran, ‘High Temperature Fatigue Crack Growth Behavior of Ti-6A1-4V’, High Temperature Materials and Processes, vol. 21, no. 4, 2011.
A. Shaikh, S. Kumar, A. Dawari, S. Kirwai, A. Patil, and R. Singh, ‘Effect of temperature and cooling rates on the α+β morphology of Ti-6Al-4V alloy’, in Procedia Structural Integrity, Elsevier B.V., 2019, pp. 782–789. doi: 10.1016/j.prostr.2019.07.056.
D. Zöllner, ‘Impact of a strong temperature gradient on grain growth in films’, Model Simul Mat Sci Eng, vol. 30, no. 2, Mar. 2022, doi: 10.1088/1361-651X/ac44a8.
ASM International, ‘Heat treating’, Ohio, 2015. Accessed: Mar. 15, 2024. [Online]. Available: https://www.amgindustries.com/ASM%20Subject%20Guide_HeatTreating.pdf
P. Lekoadi, M. Tlotleng, N. Maledi, and & B. N. Masina, ‘Effect of heat treatment on microstructure, hardness and tensile properties of high-speed selective laser melted Ti6Al4V’, in 2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference, Pretoria: CSIR, 2022.
Z.B. Fuad, ‘Effect of Heat Treatment on Fatigue Life’, Universiti of Malaysia Pahang, Malaysia, 2012.
R. Fragoudakis, S. Karditsas, G. Savaidis, and N. Michailidis, ‘The effect of heat and surface treatment on the fatigue behaviour of 56SiCr7 spring steel’, in Procedia Engineering, Elsevier Ltd, 2014, pp. 309–312. doi: 10.1016/j.proeng.2014.06.268.
K. P. Anil Rajagopal, A. Mathew Jose, A. Soman, C. J. Dcruz, and N. N. Sankar, ‘INVESTIGATION OF PHYSICAL AND MECHANICAL PROPERTIES OF Ti ALLOY (Ti-6Al-4V) UNDER PRECISELY CONTROLLED HEAT TREATMENT PROCESSES’, 2015. [Online]. Available: www.jifactor.com
Ó. Teixeira, F. J. G. Silva, L. P. Ferreira, and E. Atzeni, ‘A review of heat treatments on improving the quality and residual stresses of the Ti–6Al–4V parts produced by additive manufacturing’, Aug. 01, 2020, MDPI AG. doi: 10.3390/met10081006.
R. R. Boyer, ‘Titanium and Its Alloys: Metallurgy, Heat Treatment and Alloy Characteristics’, in Encyclopedia of Aerospace Engineering, Wiley, 2010. doi: 10.1002/9780470686652.eae198.
Frederick H. Mueller, Heat Treatment and Properties of Iron and Steel. National Bureau of Standards Library, 1960.
P. Chandramohan, S. Bhero, A. Obadele, P. A. Olubambi, and & B. Ravisankar, ‘Effect of built orientation on direct metal laser sintering of Ti-6Al-4V’, Indian Journal of Engineering & Materials Sciences, vol. 25, pp. 69–77, 2018.
J. Carlos and C. Santos, ‘A Qualification Methodology for Additively Manufactured Parts’, Repositorio Aberto da Universidade do Porto, Porto, 2016.
D. Greitemeier, F. Palm, F. Syassen, and T. Melz, ‘Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting’, Int J Fatigue, vol. 94, pp. 211–217, Jan. 2017, doi: 10.1016/j.ijfatigue.2016.05.001.
M. Frkan, R. Konecna, G. Nicoletto, and L. Kunz, ‘Microstructure and fatigue performance of SLM-fabricated Ti6Al4V alloy after different stress-relief heat treatments’, in Transportation Research Procedia, Elsevier B.V., 2019, pp. 24–29. doi: 10.1016/j.trpro.2019.07.005.
L. B. Malefane, W. B. du Preez, M. Maringa, and A. du Plessis, ‘Tensile and high cycle fatigue properties of annealed TI6AL4V (ELI) specimens produced by direct metal laser sintering’, South African Journal of Industrial Engineering, vol. 29, no. 3 Special Edition, pp. 299–311, 2018, doi: 10.7166/29-3-2077.
V. Chastand, A. Tezenas, Y. Cadoret, P. Quaegebeur, W. Maia, and E. Charkaluk, ‘Fatigue characterization of Titanium Ti-6Al-4V samples produced by Additive Manufacturing’, in Procedia Structural Integrity, Elsevier B.V., 2016, pp. 3168–3176. doi: 10.1016/j.prostr.2016.06.395.
S. Leuders et al., ‘On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance’, Int J Fatigue, vol. 48, pp. 300–307, 2013, doi: 10.1016/j.ijfatigue.2012.11.011.
M. Tarik Hasib, H. E. Ostergaard, X. Li, and J. J. Kruzic, ‘Fatigue crack growth behavior of laser powder bed fusion additive manufactured Ti-6Al-4V: Roles of post heat treatment and build orientation’, Int J Fatigue, vol. 142, Jan. 2021, doi: 10.1016/j.ijfatigue.2020.105955.
N. M. Dhansay, T. Hermann Becker, and K. Vanmeensel, ‘Fatigue crack growth rate threshold of laser powder bed fusion Ti-6Al-4V’, 2021. [Online]. Available: https://scholar.sun.ac.za
H. Clemens, S. Mayer, and C. Scheu, ‘Microstructure and Properties of Engineering Materials’, in Neutrons and Synchrotron Radiation in Engineering Materials Science: From Fundamentals to Applications: Second Edition, wiley, 2017, pp. 3–20. doi: 10.1002/9783527684489.ch1.
M. Yan and P. Yu, ‘An Overview of Densification, Microstructure and Mechanical Property of Additively Manufactured Ti-6Al-4V — Comparison among Selective Laser Melting, Electron Beam Melting, Laser Metal Deposition and Selective Laser Sintering, and with Conventional Powder’, in Sintering Techniques of Materials, InTech, 2015. doi: 10.5772/59275.
B. Naab and M. Celikin, ‘The role of microstructural evolution on the fatigue behavior of additively manufactured Ti–6Al–4V alloy’, Materials Science and Engineering: A, vol. 859, Nov. 2022, doi: 10.1016/j.msea.2022.144232.
R. O. Ritchie, ‘Mechanisms of fatigue-crack propagation in ductile and brittle solids’, Int J Fract, vol. 100, pp. 55–83, 1999.
A. Sharma, Y. Liu, Q. Nian, and Y. Jiao, ‘Data-driven Approach to Predict the Static and Fatigue Properties of Additively Manufactured Ti-6Al-4V’, Arizona State University, Tempe, 2020.
M. Motyka, ‘Martensite formation and decomposition during traditional and am processing of two-phase titanium alloys—an overview’, Mar. 01, 2021, MDPI AG. doi: 10.3390/met11030481.
J. Sieniawski, W. Ziaja, K. Kubiak, and M. Motyk, ‘Microstructure and Mechanical Properties of High Strength Two-Phase Titanium Alloys’, in Titanium Alloys - Advances in Properties Control, InTech, 2013. doi: 10.5772/56197.
J. Belan, M. Uhricik, P. Hanusova, and A. Vasko, ‘The Ti6Al4V Alloy Microstructure Modification Via Various Cooling Rates, its Influence on Hardness and Microhardness’, Manufacturing Technology, vol. 20, no. 5, pp. 560–565, 2020, doi: 10.21062/mft.2020.095.
A. L. Pilchak, A. Bhattacharjee, R. E. A. Williams, and J. C. Williams, ‘The Effect of Microstructure on Fatigue Crack Initiation in Ti-6Al-4V’, The Ohio State University, Columbus, 2009.
M. Benedetti and V. Fontanari, ‘The effect of bi-modal and lamellar microstructures of Ti-6Al-4V on the behaviour of fatigue cracks emanating from edge-notches’, Fatigue Fract Eng Mater Struct, vol. 27, no. 11, pp. 1073–1089, Nov. 2004, doi: 10.1111/j.1460-2695.2004.00825.x.
J. Zhao et al., ‘Study on mechanical properties of Ti-6Al-4 V titanium alloy with different microstructures under combined tension-bending load’, J Alloys Compd, vol. 936, Mar. 2023, doi: 10.1016/j.jallcom.2022.168201.
X. Bao, L. Cheng, J. Ding, X. Chen, K. Lu, and W. Cui, ‘The effect of microstructure and axial tension on three-point bending fatigue behavior of TC4 in high cycle and very high cycle regimes’, Materials, vol. 13, no. 1, Jan. 2020, doi: 10.3390/ma13010068.
D. Agius, K. I. Kourousis, and C. Wallbrink, ‘A review of the as-built SLM Ti-6Al-4V mechanical properties towards achieving fatigue resistant designs’, Jan. 19, 2018, MDPI AG. doi: 10.3390/met8010075.
M. Simonelli, Y. Y. Tse, and C. Tuck, ‘Microstructure of Ti-6Al-4V produced by selective laser melting’, in Journal of Physics: Conference Series, Institute of Physics Publishing, 2012. doi: 10.1088/1742-6596/371/1/012084.
P. Zhang, A. N. He, F. Liu, K. Zhang, J. Jiang, and D. Z. Zhang, ‘Evaluation of low cycle fatigue performance of selective laser melted titanium alloy Ti-6Al-4V’, Metals (Basel), vol. 9, no. 10, Oct. 2019, doi: 10.3390/met9101041.
F. Cao, T. Zhang, M. A. Ryder, and D. A. Lados, ‘A Review of the Fatigue Properties of Additively Manufactured Ti-6Al-4V’, JOM, vol. 70, no. 3, pp. 349–357, Mar. 2018, doi: 10.1007/s11837-017-2728-5.
E. Cerri, E. Ghio, and G. Bolelli, ‘Effect of surface roughness and industrial heat treatments on the microstructure and mechanical properties of Ti6Al4V alloy manufactured by laser powder bed fusion in different built orientations’, Materials Science and Engineering: A, vol. 851, Aug. 2022, doi: 10.1016/j.msea.2022.143635.
M. Neikter, ‘Microstructure and texture of additive manufactured Ti-6Al-4V’, Luleå University of Technology, Luleå, 2017.
H. Jaber, J. Kónya, K. Kulcsár, and T. Kovács, ‘Effects of Annealing and Solution Treatments on the Microstructure and Mechanical Properties of Ti6Al4V Manufactured by Selective Laser Melting’, Materials, vol. 15, no. 5, Mar. 2022, doi: 10.3390/ma15051978.
L. Kunz, P. Pokorný, R. Konečná, and G. Nicoletto, ‘Propagation of long fatigue cracks in Ti6Al4V alloy produced by direct metal laser sintering’, in Procedia Structural Integrity, Elsevier B.V., 2019, pp. 222–229. doi: 10.1016/j.prostr.2019.08.030.
T. Yuri, Y. Ono, T. Ogata, and H. Sunakawa, ‘Effect of microstructure on high-cycle fatigue properties of Ti-6Al-4V alloy forging at cryogenic temperatures’, in AIP Conference Proceedings, American Institute of Physics Inc., 2014, pp. 27–33. doi: 10.1063/1.4860600.
A. H. Chern et al., ‘A review on the fatigue behavior of Ti-6Al-4V fabricated by electron beam melting additive manufacturing’, Int J Fatigue, vol. 119, pp. 173–184, Feb. 2019, doi: 10.1016/j.ijfatigue.2018.09.022.
P. E. Carrion, N. Shamsaei, S. R. Daniewicz, and R. D. Moser, ‘Fatigue behavior of Ti-6Al-4V ELI including mean stress effects’, Int J Fatigue, vol. 99, pp. 87–100, Jun. 2017, doi: 10.1016/j.ijfatigue.2017.02.013.
B. Vayssette, N. Saintier, C. Brugger, M. Elmay, and E. Pessard, ‘Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: Effect on the High Cycle Fatigue life’, in Procedia Engineering, Elsevier Ltd, 2018, pp. 89–97. doi: 10.1016/j.proeng.2018.02.010.
E. Wycisk, A. Solbach, S. Siddique, D. Herzog, F. Walther, and C. Emmelmann, ‘Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties’, in Physics Procedia, Elsevier B.V., 2014, pp. 371–378. doi: 10.1016/j.phpro.2014.08.120.
B. Fotovvati, N. Namdari, and A. Dehghanghadikolaei, ‘Fatigue performance of selective laser melted Ti6Al4V components: State of the art’, Mater Res Express, vol. 6, no. 1, Jan. 2019, doi: 10.1088/2053-1591/aae10e.
W. Eric, E. Claus, S. Shafaqat, and W. Frank, ‘High cycle fatigue (HCF) performance of Ti-6Al-4V alloy processed by selective laser melting’, in Advanced Materials Research, 2013, pp. 134–139. doi: 10.4028/www.scientific.net/AMR.816-817.134.
A. E. Patterson, S. L. Messimer, and P. A. Farrington, ‘Overhanging Features and the SLM/DMLS Residual Stresses Problem: Review and Future Research Need’, Technologies (Basel), vol. 5, no. 4, p. 15, Apr. 2017, doi: 10.3390/technologies5020015.
W. H. Kan et al., ‘A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion’, Jun. 01, 2022, Springer. doi: 10.1007/s10853-022-06990-7.
M. G. Moletsane, P. Krakhmalev, N. Kazantseva, A. du Plessis, I. Yadroitsava, and I. Yadroitsev, ‘Tensile properties and microstructure of direct metal laser-sintered Ti6Al4V (ELI) alloy’, South African Journal of Industrial Engineering, vol. 27, no. 3SpecialIssue, pp. 110–121, 2016, doi: 10.7166/27-3-1667.
A. Guzanová, G. Ižaríková, J. Brezinová, J. Živčák, D. Draganovská, and R. Hudák, ‘Influence of build orientation, heat treatment, and laser power on the hardness of Ti6Al4V manufactured using the DMLS process’, Metals (Basel), vol. 7, no. 8, Aug. 2017, doi: 10.3390/met7080318.
M. G. Moletsane, ‘Microstructure and mechanical properties of Ti6Al4V (ELI) parts produced by DMLS’, Master Technology, Central University of Technology, Free State, Bloemfontein, 2016.
V. D. Le, E. Pessard, F. Morel, and S. Prigent, ‘Fatigue behaviour of additively manufactured Ti-6Al-4V alloy: The role of defects on scatter and statistical size effect’, Int J Fatigue, vol. 140, Nov. 2020, doi: 10.1016/j.ijfatigue.2020.105811.
D. Wang et al., ‘Densification, Tailored Microstructure, and Mechanical Properties of Selective Laser Melted Ti–6Al–4V Alloy via Annealing Heat Treatment’, Micromachines (Basel), vol. 13, no. 2, Feb. 2022, doi: 10.3390/mi13020331.
ASTM International, ‘ Standard Terminology for Additive Manufacturing—Coordinate Systems and Test Methodologies’, Ohio, 2013.
M. Rybachuk, C. Alice Mauger, T. Fiedler, and A. Öchsner, ‘Anisotropic mechanical properties of fused deposition modeled parts fabricated by using acrylonitrile butadiene styrene polymer’, Journal of Polymer Engineering, vol. 37, no. 7, pp. 699–706, Sep. 2017, doi: 10.1515/polyeng-2016-0263.
A. Bača, R. Konečná, G. Nicoletto, and L. Kunz, ‘Influence of Build Direction on the Fatigue Behaviour of Ti6Al4V Alloy Produced by Direct Metal Laser Sintering’, in Materials Today: Proceedings, Elsevier Ltd, 2016, pp. 921–924. doi: 10.1016/j.matpr.2016.03.021.
C. R. Knowles, T. H. Becker, and R. B. Tait, ‘RESIDUAL STRESS MEASUREMENTS AND STRUCTURAL INTEGRITY IMPLICATIONS FOR SELECTIVE LASER MELTED TI-6AL-4V #’, South African Journal of Industrial Engineering, vol. 23, no. 3, 2012.
L. B. Malefane, ‘Determination of the Fatigue Properties of Ti6Al4V (ELI) Parts built by a Direct Metal Laser Sintering System with Standard Process Parameters Followed by Post-Processing Treatments’, Master of Engineering, Central University of Technology, Free State, Bloemfontein, 2019.
Q. C. Liu, J. Elambasseril, S. J. Sun, M. Leary, M. Brandt, and P. K. Sharp, ‘The effect of manufacturing defects on the fatigue behaviour of Ti-6Al-4V specimens fabricated using selective laser melting’, in Advanced Materials Research, Trans Tech Publications, 2014, pp. 1519–1524. doi: 10.4028/www.scientific.net/AMR.891-892.1519.
K. S. Chan, M. Koike, R. L. Mason, and T. Okabe, ‘Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for dental implants’, Metall Mater Trans A Phys Metall Mater Sci, vol. 44, no. 2, pp. 1010–1022, Feb. 2013, doi: 10.1007/s11661-012-1470-4.
G. M. Ter Haar and T. H. Becker, ‘Low temperature stress relief and martensitic decomposition in selective laser melting produced Ti6Al4V’, Material Design and Processing Communications, vol. 3, no. 1, Feb. 2021, doi: 10.1002/mdp2.138.
V. Cain, L. Thijs, J. Van Humbeeck, B. Van Hooreweder, and R. Knutsen, ‘Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting’, Addit Manuf, vol. 5, pp. 68–76, Jan. 2015, doi: 10.1016/j.addma.2014.12.006.
Z. W. Xu, A. Liu, and X. S. Wang, ‘The influence of building direction on the fatigue crack propagation behavior of Ti6Al4V alloy produced by selective laser melting’, Materials Science and Engineering: A, vol. 767, Nov. 2019, doi: 10.1016/j.msea.2019.138409.
S. Kumar, K. Chattopadhyay, and V. Singh, ‘Tensile Behavior of Ti-6Al-4V alloy at Elevated Temperatures’, 2014. [Online]. Available: https://www.researchgate.net/publication/308787239
S. Ivanov, M. Gushchina, A. Artinov, M. Khomutov, and E. Zemlyakov, ‘Effect of Elevated Temperatures on the Mechanical Properties of a Direct Laser Deposited Ti-6Al-4V’, Materials, vol. 14, no. 21, 2021, doi: 10.3390/ma.
R. Liu, Y. Tian, Z. Zhang, X. An, P. Zhang, and Z. Zhang, ‘Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain size’, Sci Rep, vol. 6, Jun. 2016, doi: 10.1038/srep27433.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2025 Tumelo Moloi, Thywill Cephas Dzogbewu, Maina Maringa, Amos Muiruri

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their published articles online (e.g., in institutional repositories or on their website, social networks like ResearchGate or Academia), as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.