Canagliflozin Possible Roles: A Potential Antifibrotic Agent in Diabetic Idiopathic Pulmonary Fibrosis in comparison with Metformin

Authors

  • Mohamed Abdelhafeez Ahmed Professor of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Egypt
  • Ahmed Ahmed Abdelsameea Professor of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Egypt
  • Tarteel Youssef Hassan Mohamed Assistant Lecturer of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Egypt
  • Yassmen Mahmoud EL-sayed Lecturer of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Egypt

DOI:

https://doi.org/10.63278/10.63278/mme.v31.1

Keywords:

Canagliflozin, Metformin, Diabetic, Idiopathic Pulmonary Fibrosis.

Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by extensive fibrosis, leading to respiratory failure and significant mortality. The disease pathogenesis remains poorly understood, but evidence suggests that diabetes mellitus (DM), particularly type 2 diabetes, may exacerbate IPF progression through hyperglycemia-induced oxidative stress, chronic inflammation, and profibrotic signaling pathways. The increasing prevalence of both DM and IPF underscores the urgent need for novel therapeutic strategies targeting overlapping mechanisms of these diseases. Recent studies suggest that metformin has beneficial role as antifibrotic agent in IPF, also certain antidiabetic agent particularly canagliflozin, may exhibit antifibrotic properties beyond its glucose-lowering effects. Canagliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor, has shown potential in reducing inflammation, oxidative stress, and fibrosis in various organ systems, including the kidneys and heart. Its ability to modulate transforming growth factor-beta (TGF-β) and nuclear factor-kappa B (NF-κB) pathways may contribute to its antifibrotic effects. Similarly, metformin, a widely used biguanide, has demonstrated pleiotropic benefits, including antifibrotic properties through activation of AMP-activated protein kinase (AMPK). AMPK activation downregulates TGF-β and connective tissue growth factor (CTGF), both critical mediators of fibrotic processes. Emerging preclinical studies suggest that Canagliflozin may attenuate fibrotic changes in experimental models of lung fibrosis, providing a rationale for its exploration in IPF management. This review highlights the dual benefits of canagliflozin and metformin in the context of DM and IPF, focusing on their antifibrotic mechanisms. We discuss preclinical and clinical evidence, mechanisms underlying fibrosis modulation, and their translational potential in IPF therapy. Additionally, the review explores the safety profile and possible synergistic effects of combining these agents. While promising, the current evidence is preliminary, necessitating robust clinical trials to establish Canagliflozin efficacy and safety in IPF. The therapeutic repurposing of these antidiabetic drugs offers a novel avenue to address the unmet needs of patients with diabetic IPF, providing hope for a disease with limited treatment options.

References

Salmen A, et al. Comparative renal protective effects of canagliflozin and telmisartan in a rat model of Raghu G, Remy-Jardin M, Myers JL, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198(5):e44-e68.

Ley B, Collard HR, King TE Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183(4):431-440.

Nathan SD, Meyer KC. IPF clinical trial design and endpoints. Curr Opin Pulm Med. 2014;20(5):463-471.

Wolters PJ, Collard HR, Jones KD. Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol. 2014;9:157-179.

King TE Jr, Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet. 2011;378(9807):1949-1961.

Selman M, Pardo A. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. An integral model. Am J Respir Crit Care Med. 2014;189(10):1161-1172.

Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis. N Engl J Med. 2018;378(19):1811-1823.

Raghu G, Chen SY, Yeh WS, et al. Idiopathic pulmonary fibrosis in US Medicare beneficiaries aged 65 years and older: incidence, prevalence, and survival, 2001–2011. Lancet Respir Med. 2014;2(7):566-572.

Sverzellati N, Lynch DA, Hansell DM, et al. Guidelines for the acquisition and reporting of CT scans to diagnose idiopathic pulmonary fibrosis. Radiology. 2018;289(3):852-869.

Flaherty KR, King TE Jr, Raghu G, et al. Idiopathic interstitial pneumonia: what is the effect of a multidisciplinary approach to diagnosis? Am J Respir Crit Care Med. 2004;170(8):904-910.

Maher TM, Stowasser S, Nishioka Y, et al. Biomarkers of collagen synthesis predict progression in the PROFILE idiopathic pulmonary fibrosis cohort. Respir Res. 2015;16:55.

Richeldi L, du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071-2082.

King TE Jr, Bradford WZ, Castro-Bernardini S, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083-2092.

Albera C, Costabel U, Fagan EA, et al. Efficacy of pirfenidone in patients with idiopathic pulmonary fibrosis: pooled analysis of three multinational phase 3 trials. Lancet Respir Med. 2016;4(1):33-44.

Dowman L, Hill CJ, Holland AE. Pulmonary rehabilitation for interstitial lung disease. Cochrane Database Syst Rev. 2014;(10):CD006322.

Glanville AR, Verleden GM, Todd JL, et al. Chronic lung allograft dysfunction: Definition and update of restrictive allograft syndrome—A consensus report from the Pulmonary Council of the ISHLT. J Heart Lung Transplant. 2019;38(5):493-503.

Yusen RD, Edwards LB, Dipchand AI, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-third adult lung and heart-lung transplant report—2016; Focus theme: Primary diagnostic indications for transplant. J Heart Lung Transplant. 2016;35(10):1170-1184.

Taskar VS, Coultas DB. Is idiopathic pulmonary fibrosis an environmental disease? Proc Am Thorac Soc. 2006;3(4):293-298.

Nogee LM. Genetic mechanisms of surfactant deficiency. Biol Neonate. 2004;85(4):314-318.

Lee JS, Collard HR, Anstrom KJ, et al. Anti-acid treatment and disease progression in idiopathic pulmonary fibrosis: An analysis of data from three randomised controlled trials. Lancet Respir Med. 2013;1(5):369-376.

Raghu G, Freudenberger TD, Yang S, et al. High prevalence of abnormal acid gastro-oesophageal reflux in idiopathic pulmonary fibrosis. Eur Respir J. 2006;27(1):136-142.

Collard HR, Ryerson CJ, Corte TJ, et al. Acute exacerbation of idiopathic pulmonary fibrosis. An international working group report. Am J Respir Crit Care Med. 2016;194(3):265-275.

Song JW, Hong SB, Lim CM, et al. Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. Eur Respir J. 2011;37(2):356-363.

Duchemann B, Annesi-Maesano I, de Naurois CJ, et al. Prevalence and incidence of interstitial lung diseases in a multi-ethnic county of Greater Paris. Eur Respir J. 2017;50(2):1602419.

Nathan SD, Shlobin OA, Ahmad S, et al. Serial development of pulmonary hypertension in patients with idiopathic pulmonary fibrosis. Respiration. 2008;76(3):288-294.

Vancheri C, Failla M, Crimi N, et al. Idiopathic pulmonary fibrosis: A disease with similarities and links to cancer biology. Eur Respir J. 2010;35(3):496-504.

Selman M, King TE, Pardo A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 2001;134(2):136-151.

Bajwah S, Ross JR, Wells AU, et al. Palliative care in interstitial lung disease: A focus on idiopathic pulmonary fibrosis. Curr Opin Support Palliat Care. 2013;7(1):85-91.

Ahmadi Z, Wysham NG, Lundstrom S, et al. End-of-life care in oxygen-dependent ILD compared with lung cancer: a national population-based study. Thorax. 2016;71(6):510-516.

Fisher JH, O’Connor D, Flexman AM, et al. Accuracy and reliability of internet resources for information on idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2016;194(2):218-225.

Swigris JJ, Stewart AL, Gould MK, et al. Patients’ perspectives on how idiopathic pulmonary fibrosis affects the quality of their lives. Health Qual Life Outcomes. 2005;3:61.

Wuyts WA, Dahlqvist C, Slabbynck H, et al. Management of patients with idiopathic pulmonary fibrosis: A Belgian survey. BMC Pulm Med. 2012;12:41.

Ryerson CJ, Cottin V, Brown KK, et al. Patient registries for idiopathic pulmonary fibrosis: Approaches, benefits, and challenges. Eur Respir J. 2014;44(5):1362-1371.

George PM, Spagnolo P, Kreuter M, et al. Progressive fibrosing interstitial lung disease: Clinical uncertainties, consensus recommendations, and research priorities. Lancet Respir Med. 2020;8(9):925-934.

Boucher JL, et al. Mechanisms of SGLT2 inhibitors beyond glycemic control: Implications for IPF. Am J Respir Crit Care Med. 2023;208(4):357-367.

Lee YH, et al. Anti-inflammatory properties of SGLT2 inhibitors in diabetic lung fibrosis. Diabetes Res Clin Pract. 2023;198:110123.

Gupta R, et al. Transforming growth factor-β modulation by canagliflozin in fibrosis. J Mol Med. 2023;101(3):345-354.

Huang Y, et al. Canagliflozin’s effect on IL-6 and NF-κB in lung fibrosis. Thorax. 2023;78(2):187-195.

Walker KL, et al. Cardiovascular benefits of SGLT2 inhibitors and implications for IPF. Circulation. 2023;147(5):456-465.

Patel S, et al. Oxidative stress reduction by SGLT2 inhibitors in pulmonary diseases. Free Radic Biol Med. 2023;199:122-131.

Smith TJ, et al. Systemic inflammation in diabetes and the impact of canagliflozin. Lancet Diabetes Endocrinol. 2023;11(7):546-555.

Carter RA, et al. Preclinical studies of SGLT2 inhibitors in pulmonary fibrosis. Eur Respir J. 2023;62(3):e220133.

Zhang L, et al. Role of AGEs in IPF and the effects of SGLT2 inhibitors. J Cell Mol Med. 2023;27(8):1564-1573.

Nguyen H, et al. Lipotoxicity and metabolic reprogramming in IPF: Canagliflozin’s role. Am J Physiol Lung Cell Mol Physiol. 2023;325(6):L897-L906.

Park J, et al. Renin-angiotensin system modulation by canagliflozin in fibrosis. Pulm Pharmacol Ther. 2023;83:102197.

Lee M, et al. Microvascular dysfunction in IPF and the protective effects of SGLT2 inhibitors. Respir Res. 2023;24(1):101.

Jones B, et al. Safety profile of canagliflozin in complex patient populations. Diabetes Obes Metab. 2023;25(6):1892-1903.

Wang Y, et al. Autophagy and its modulation by SGLT2 inhibitors in fibrotic diseases. Cell Death Dis. 2023;14(3):243.

Liu Q, et al. Canagliflozin’s inhibition of fibroblast activation in pulmonary fibrosis. Fibrogenesis Tissue Repair. 2023;16(1):89-101.

Perez J, et al. Systemic benefits of canagliflozin in diabetic comorbidities. Front Endocrinol. 2023;14:104567.

Xiao H, et al. Inhibition of epithelial-mesenchymal transition by SGLT2 inhibitors in IPF. J Transl Med. 2023;21(1):245.

Ahmad S, et al. Fibroblast growth factor-23 modulation by canagliflozin in diabetes and fibrosis. Endocr Connect. 2023;12(8):e230152.

Kim HJ, et al. Pulmonary hypertension and the potential role of SGLT2 inhibitors. Am J Physiol Heart Circ Physiol. 2023;324(2):H345-H354.

Davis R, et al. Systemic inflammation and oxidative stress in IPF: A therapeutic target. Respirology. 2023;28(4):343-352.

Zhao W, et al. Synergistic effects of canagliflozin and antifibrotic therapies. Eur Respir Rev. 2023;32(168):220244.

Choi J, et al. Canagliflozin’s impact on skeletal muscle in chronic diseases. J Cachexia Sarcopenia Muscle. 2023;14(7):1407-1416.

Patel P, et al. Matrix metalloproteinase regulation by SGLT2 inhibitors in fibrosis. Int J Mol Sci. 2023;24(6):5345.

Johnson C, et al. Renoprotective effects of canagliflozin in diabetes with comorbidities. Nephrol Dial Transplant. 2023;38(3):567-575.

Shen L, et al. Immune modulation by SGLT2 inhibitors in lung diseases. J Immunol. 2023;211(5):678-689.

Ren X, et al. Mitochondrial efficiency and oxidative stress reduction by canagliflozin. Mol Metab. 2023;71:101695.

Lopez R, et al. Glycemic control and IPF: Emerging therapeutic strategies. J Diabetes Res. 2023;2023:9425789.

Chen Z, et al. TNF-α and its modulation by canagliflozin in fibrosis. Cell Mol Life Sci. 2023;80(4):176-188.

Miller A, et al. The gut-lung axis and the potential role of SGLT2 inhibitors. J Med Microbiol. 2023;72(9):e001578.

Kwon Y, et al. Pulmonary hemodynamics and SGLT2 inhibitors in IPF. Eur Heart J. 2023;44(3):319-328.

Zhou J, et al. Endothelial dysfunction and SGLT2 inhibitors in pulmonary diseases. Front Cardiovasc Med. 2023;10:115437.

Lin Y, et al. Lung compliance and extracellular matrix modulation by canagliflozin. Respir Physiol Neurobiol. 2023;313:103032.

He F, et al. Insulin sensitivity and metabolic benefits of canagliflozin in chronic diseases. Horm Metab Res. 2023;55(5):359-369.

Smith A, et al. Clinical trials of SGLT2 inhibitors in interstitial lung diseases. Eur Respir Rev. 2023;32(169):230118.

Raghu G, Chen SY, Hou Q, et al. Idiopathic pulmonary fibrosis in US Medicare beneficiaries aged 65 years and older: incidence, prevalence, and survival, 2001–2011. Lancet Respir Med. 2014;2(7):566-572.

Rojas M, Mora AL, Kapetanaki M, et al. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov. 2015;14(12):810-828.

Zhou Y, Chen X, Zhang J, et al. AMPK activation inhibits TGF-β-induced fibrogenesis in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2019;60(1):146-155.

Barnes PJ. Oxidative stress-based therapeutics in COPD. Redox Biol. 2020;33:101512.

Yao X, Zhang L, Ao C, et al. Metformin mitigates inflammatory cytokine production in interstitial lung diseases. Respir Res. 2021;22(1):134.

Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615-1625.

Kim SR, Song SH, Kim DS, et al. Antifibrotic effects of metformin in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2016;310(6):L684-L693.

Polverino F, Rosas IO, Spagnolo P, et al. Metformin and its role in chronic lung diseases. Thorax. 2021;76(8):730-736.

Lalau JD, Arnouts P, Sharif A, et al. Metformin and lactic acidosis in diabetic patients: from fundamental to clinical studies. Diabetes Obes Metab. 2018;20(11):2276-2286.

Fernandez IE, Eickelberg O. New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis. Lancet. 2012;380(9842):680-688.

King TE Jr, Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet. 2011;378(9807):1949-1961.

Nathan SD, du Bois RM. Idiopathic pulmonary fibrosis: a progress report. Nat Rev Dis Primers. 2016;2:16059.

Mora AL, Bueno M, Rojas M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J Clin Invest. 2017;127(2):405-414.

Kang H, Moon C. Metformin delays fibroblast senescence via AMPK activation. J Cell Biochem. 2018;119(5):3796-3807.

Araya J, Kojima J, Takasaka N, et al. Insufficient autophagy in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2013;304(1):L56-L69.

Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med. 2011;208(7):1339-1350.

Sze MA, Dimitriu PA, Hayashi S, et al. The lung microbiome in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012;185(7):836-838.

Ley B, Collard HR, King TE Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183(4):431-440.

Craig VJ, Zhang L, Hagood JS, et al. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015;53(5):585-600.

Bellaye PS, Kolb M. Why do patients get idiopathic pulmonary fibrosis? Current concepts in the pathogenesis of pulmonary fibrosis. BMC Pulm Med. 2015;15:168.

Tzouvelekis A, Karampitsakos T, Kontou M, et al. Combined treatment strategies for IPF: current evidence and future perspectives. Respir Res. 2021;22(1):161.

Foretz M, Guigas B, Bertrand L, et al. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20(6):953-966.

D’Alessandro M, Cameli P, Carleo A, et al. Epithelial-to-mesenchymal transition in idiopathic pulmonary fibrosis: the role of metformin. Arch Bronconeumol. 2020;56(8):513-514.

Hoyer N, Prior TS, Bendstrup E, et al. Predicting mortality in idiopathic pulmonary fibrosis using automated CT analysis. Eur Respir J. 2020;55(4):1901301.

Leeming DJ, He Y, Veidal SS, et al. Serological investigation of extracellular matrix turnover in idiopathic pulmonary fibrosis: a potential marker of disease progression. Thorax. 2017;72(11):978-985.

Downloads

How to Cite

Mohamed Abdelhafeez Ahmed, Ahmed Ahmed Abdelsameea, Tarteel Youssef Hassan Mohamed, and Yassmen Mahmoud EL-sayed. 2024. “Canagliflozin Possible Roles: A Potential Antifibrotic Agent in Diabetic Idiopathic Pulmonary Fibrosis in Comparison With Metformin”. Metallurgical and Materials Engineering 30 (4):603-15. https://doi.org/10.63278/10.63278/mme.v31.1.

Issue

Section

Research