Metallic Scaffolds for Tissue and Bone Engineering: Applications in Radiology, Pharmacy, Nursing, Emergency Services, and Laboratory Sciences
DOI:
https://doi.org/10.63278/10.63278/mme.v31.1Keywords:
Metallic scaffolds, tissue engineering, bone regeneration, additive manufacturing, biocompatibility, bioactivity, drug delivery systems, regenerative medicine, radiology, trauma management.Abstract
Metallic scaffolds have emerged as vital tissue and bone engineering tools due to their exceptional mechanical strength, biocompatibility, and bioactivity. These scaffolds serve as templates for tissue regeneration, guiding cellular behavior and supporting the growth of bone-like tissues. The integration of metallic scaffolds across diverse fields such as radiology, pharmacy, nursing, emergency services, and laboratory sciences highlights their multidisciplinary significance. This review explores the material properties, fabrication techniques, and characterization methods of metallic scaffolds, emphasizing their applications in regenerative medicine and their role in drug delivery systems. Challenges such as regulatory considerations, biocompatibility concerns, and scalability issues are discussed, along with future research directions aimed at optimizing scaffold performance and clinical applicability.
References
Gao, J., Feng, L., Chen, B., Fu, B., & Zhu, M. (2022). The role of rare earth elements in bone tissue engineering scaffolds-a review. Composites Part B: Engineering. sciencedirect.com
Flores-Jacobo, A., Aguilar-Reyes, E. A., & León-Patiño, C. A. (2023). Effect of dopants on the physical, mechanical, and biological properties of porous scaffolds for bone tissue engineering. Biomedical Materials & Devices, 1(1), 234-255. academia.edu
Collins, M. N., Ren, G., Young, K., Pina, S., Reis, R. L., & Oliveira, J. M. (2021). Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Advanced functional materials, 31(21), 2010609. wiley.com
Marin, E. (2023). Forged to heal: The role of metallic cellular solids in bone tissue engineering. Materials Today Bio. sciencedirect.com
Li, S., Dong, C., & Lv, Y. (2022). Magnetic liquid metal scaffold with dynamically tunable stiffness for bone tissue engineering. Biomaterials Advances. [HTML]
Percival, K. M., Paul, V., & Husseini, G. A. (2024). Recent Advancements in Bone Tissue Engineering: Integrating Smart Scaffold Technologies and Bio-Responsive Systems for Enhanced Regeneration. International Journal of Molecular Sciences, 25(11), 6012. mdpi.com
Yuan, X., Zhu, W., Yang, Z., He, N., Chen, F., Han, X., & Zhou, K. (2024). Recent advances in 3D printing of smart scaffolds for bone tissue engineering and regeneration. Advanced Materials, 36(34), 2403641. [HTML]
Zerankeshi, M. M., Bakhshi, R., & Alizadeh, R. (2022). Polymer/metal composite 3D porous bone tissue engineering scaffolds fabricated by additive manufacturing techniques: A review. Bioprinting. [HTML]
Chen, Z., Zhang, W., Wang, M., Backman, L. J., & Chen, J. (2022). Effects of zinc, magnesium, and iron ions on bone tissue engineering. ACS biomaterials science & engineering, 8(6), 2321-2335. [HTML]
Ruiz-Alonso, S., Lafuente-Merchan, M., Ciriza, J., Saenz-del-Burgo, L., & Pedraz, J. L. (2021). Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques. Journal of Controlled Release, 333, 448-486. sciencedirect.com
Zhu, G., Zhang, T., Chen, M., Yao, K., Huang, X., Zhang, B., ... & Zhao, Z. (2021). Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioactive materials, 6(11), 4110-4140. sciencedirect.com
Miranda, C. S., Ribeiro, A. R. M., Homem, N. C., & Felgueiras, H. P. (2020). Spun biotextiles in tissue engineering and biomolecules delivery systems. Antibiotics. mdpi.com
Ashammakhi, N., GhavamiNejad, A., Tutar, R., Fricker, A., Roy, I., Chatzistavrou, X., ... & Caterson, E. J. (2022). Highlights on advancing frontiers in tissue engineering. Tissue Engineering Part B: Reviews, 28(3), 633-664. liebertpub.com
Zhang, B., Hu, Y., Du, H., Han, S., Ren, L., Cheng, H., ... & Chai, R. (2024). Tissue engineering strategies for spiral ganglion neuron protection and regeneration. Journal of Nanobiotechnology, 22(1), 458. springer.com
Serrano-Aroca, Á., Cano-Vicent, A., i Serra, R. S., El-Tanani, M., Aljabali, A., Tambuwala, M. M., & Mishra, Y. K. (2022). Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Materials Today Bio, 16, 100412. sciencedirect.com
Yadav, S., Khan, J., & Yadav, A. (2024). Applications of scaffolds in tissue engineering: current utilization and future prospective. Current Gene Therapy. [HTML]
Boyetey, M. J. B., Torgbo, S., & Sukyai, P. (2023). Bio-scaffold for bone tissue engineering with focus on bacterial cellulose, biological materials for hydroxyapatite synthesis and growth factors. European Polymer Journal. [HTML]
Md Yusop, A. H., Al Sakkaf, A., & Nur, H. (2022). Modifications on porous absorbable Fe‐based scaffolds for bone applications: A review from corrosion and biocompatibility viewpoints. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 110(1), 18-44. [HTML]
Li, M., Benn, F., Derra, T., Kröger, N., Zinser, M., Smeets, R., ... & LLorca, J. (2021). Microstructure, mechanical properties, corrosion resistance and cytocompatibility of WE43 Mg alloy scaffolds fabricated by laser powder bed fusion for biomedical applications. Materials Science and Engineering: C, 119, 111623. [PDF]
Carluccio, D., Demir, A. G., Bermingham, M. J., & Dargusch, M. S. (2020). Challenges and opportunities in the selective laser melting of biodegradable metals for load-bearing bone scaffold applications. Metallurgical and Materials Transactions A, 51, 3311-3334. polimi.it
Lv, Y., Wang, B., Liu, G., Tang, Y., Lu, E., Xie, K., ... & Wang, L. (2021). Metal material, properties and design methods of porous biomedical scaffolds for additive manufacturing: a review. Frontiers in Bioengineering and Biotechnology, 9, 641130. frontiersin.org
Ramya, M. (2024). Advances in Biodegradable Orthopaedic Implants: Optimizing Magnesium Alloy Corrosion Resistance for Enhanced Bone Repair. Biomedical Materials & Devices. [HTML]
Nasr Azadani, M., Zahedi, A., Bowoto, O. K., & Oladapo, B. I. (2022). A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Progress in Biomaterials, 11(1), 1-26. nih.gov
Gutiérrez Púa, L. D. C., Rincón Montenegro, J. C., Fonseca Reyes, A. M., Zambrano Rodríguez, H., & Paredes Méndez, V. N. (2023). Biomaterials for orthopedic applications and techniques to improve corrosion resistance and mechanical properties for magnesium alloy: a review. Journal of Materials Science, 58(9), 3879-3908. springer.com
Sezer, N., Evis, Z., & Koc, M. (2021). Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends. Journal of Magnesium and Alloys. sciencedirect.com
Jurak, M., Wiącek, A. E., Ładniak, A., Przykaza, K., & Szafran, K. (2021). What affects the biocompatibility of polymers?. Advances in Colloid and Interface Science, 294, 102451. [HTML]
Huzum, B., Puha, B., Necoara, R. M., Gheorghevici, S., Puha, G., Filip, A., ... & Alexa, O. (2021). Biocompatibility assessment of biomaterials used in orthopedic devices: An overview. Experimental and Therapeutic Medicine, 22(5), 1-9. spandidos-publications.com
Cacopardo, L. (2022). Biomaterials and biocompatibility. Human Orthopaedic Biomechanics. [HTML]
Rahmati, M., Silva, E. A., Reseland, J. E., Heyward, C. A., & Haugen, H. J. (2020). Biological responses to physicochemical properties of biomaterial surface. Chemical Society Reviews, 49(15), 5178-5224. rsc.org
Adeyemi, J. O., Oriola, A. O., Onwudiwe, D. C., & Oyedeji, A. O. (2022). Plant extracts mediated metal-based nanoparticles: synthesis and biological applications. Biomolecules. mdpi.com
Cao, H., Duan, L., Zhang, Y., Cao, J., & Zhang, K. (2021). Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal transduction and targeted therapy, 6(1), 426. nature.com
Zhao, Y., Zhang, Z., Pan, Z., & Liu, Y. (2021). Advanced bioactive nanomaterials for biomedical applications. Exploration. wiley.com
Kopac, T. (2021). Protein corona, understanding the nanoparticle–protein interactions and future perspectives: A critical review. International Journal of Biological Macromolecules. [HTML]
Sidhu, S. S., Singh, H., & Gepreel, M. A. H. (2021). A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials. Materials Science and Engineering: C. [HTML]
McKim, J. M. (2024). Physiological and biochemical mechanisms that regulate the accumulation and toxicity of environmental chemicals in fish. Bioavailability. [HTML]
Szymczyk-Ziółkowska, P., Łabowska, M. B., Detyna, J., Michalak, I., & Gruber, P. (2020). A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybernetics and Biomedical Engineering, 40(2), 624-638. [HTML]
Kumar, M. B. & Sathiya, P. (2021). Methods and materials for additive manufacturing: A critical review on advancements and challenges. Thin-Walled Structures. [HTML]
Germaini, M. M., Belhabib, S., Guessasma, S., Deterre, R., Corre, P., & Weiss, P. (2022). Additive manufacturing of biomaterials for bone tissue engineering–A critical review of the state of the art and new concepts. Progress in Materials Science, 130, 100963. sciencedirect.com
Attarilar, S., Ebrahimi, M., Djavanroodi, F., Fu, Y., Wang, L., & Yang, J. (2020). 3D printing technologies in metallic implants: a thematic review on the techniques and procedures. International Journal of Bioprinting, 7(1), 306. nih.gov
Hutmacher, D. W., Tandon, B., & Dalton, P. D. (2023). Scaffold design and fabrication. Tissue engineering. [HTML]
Adel, I. M., ElMeligy, M. F., & Elkasabgy, N. A. (2022). Conventional and recent trends of scaffolds fabrication: a superior mode for tissue engineering. Pharmaceutics. mdpi.com
Wang, Z., Wang, Y., Yan, J., Zhang, K., Lin, F., Xiang, L., ... & Zhang, H. (2021). Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Advanced drug delivery reviews, 174, 504-534. sciencedirect.com
Capuana, E., Lopresti, F., Carfì Pavia, F., Brucato, V., & La Carrubba, V. (2021). Solution-based processing for scaffold fabrication in tissue engineering applications: A brief review. Polymers, 13(13), 2041. mdpi.com
Aslam Khan, M. U., Aslam, M. A., Bin Abdullah, M. F., & Stojanović, G. M. (2024). Current perspectives of protein in bone tissue Engineering: bone structure, Ideal scaffolds, fabrication techniques, applications, Scopes, and future advances. ACS Applied Bio Materials, 7(8), 5082-5106. [HTML]
Jiang, J., Xiong, Y., Zhang, Z., & Rosen, D. W. (2022). Machine learning integrated design for additive manufacturing. Journal of Intelligent Manufacturing, 33(4), 1073-1086. smu.edu.sg
Ren, K., Chew, Y., Liu, N., Zhang, Y. F., Fuh, J. Y. H., & Bi, G. J. (2021). Integrated numerical modelling and deep learning for multi-layer cube deposition planning in laser aided additive manufacturing. Virtual and Physical Prototyping, 16(3), 318-332. [HTML]
Xiong, Y., Tang, Y., Zhou, Q., Ma, Y., & Rosen, D. W. (2022). Intelligent additive manufacturing and design: state of the art and future perspectives. Additive Manufacturing. sustech.edu.cn
Das, A., Medhi, T., Kapil, S., & Biswas, P. (2024). Different build strategies and computer-aided process planning for fabricating a functional component through hybrid-friction stir additive manufacturing. International Journal of Computer Integrated Manufacturing, 37(3), 350-371. researchgate.net
Matos, M. A., Rocha, A. M. A., & Costa, L. A. (2021). Many-objective optimization of build part orientation in additive manufacturing. The International Journal of Advanced Manufacturing Technology, 112(3), 747-762. uminho.pt
Liu, J., Huang, J., Zheng, Y., Hou, S., Xu, S., Ma, Y., ... & Li, L. (2023). Challenges in topology optimization for hybrid additive–subtractive manufacturing: A review. Computer-Aided Design, 161, 103531. [HTML]
Chen, R., Rao, P., Lu, Y., Reutzel, E. W., & Yang, H. (2021). Recurrence network analysis of design-quality interactions in additive manufacturing. Additive manufacturing. sciencedirect.com
Liu, G., Zhang, X., Chen, X., He, Y., Cheng, L., Huo, M., ... & Lu, J. (2021). Additive manufacturing of structural materials. Materials Science and Engineering: R: Reports, 145, 100596. sciencedirect.com
Korium, M. S., Roozbahani, H., Alizadeh, M., Perepelkina, S., & Handroos, H. (2021). Direct metal laser sintering of precious metals for jewelry applications: process parameter selection and microstructure analysis. IEEE Access, 9, 126530-126540. ieee.org
Armstrong, M., Mehrabi, H., & Naveed, N. (2022). An overview of modern metal additive manufacturing technology. Journal of Manufacturing Processes. sciencedirect.com
Alhashmi Alamer, F. & Beyari, R. F. (2022). Overview of the influence of silver, gold, and titanium nanoparticles on the physical properties of PEDOT: PSS-coated cotton fabrics. Nanomaterials. mdpi.com
Song, Y., Ghafari, Y., Asefnejad, A., & Toghraie, D. (2024). An overview of selective laser sintering 3D printing technology for biomedical and sports device applications: Processes, materials, and applications. Optics & Laser Technology. [HTML]
Secor, E. B., Bell, N. S., Romero, M. P., Tafoya, R. R., Nguyen, T. H., & Boyle, T. J. (2022). Titanium hydride nanoparticles and nanoinks for aerosol jet printed electronics. Nanoscale, 14(35), 12651-12657. rsc.org
Arjunan, A., Robinson, J., Al Ani, E., Heaselgrave, W., Baroutaji, A., & Wang, C. (2020). Mechanical performance of additively manufactured pure silver antibacterial bone scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 112, 104090. openrepository.com
Petrossian, G., Kateb, P., Miquet-Westphal, F., & Cicoira, F. (2023). Advances in electrode materials for scalp, forehead, and ear EEG: a mini-review. ACS Applied Bio Materials, 6(8), 3019-3032. [HTML]
Suamte, L., Tirkey, A., Barman, J., & Babu, P. J. (2023). Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Materials in Manufacturing. sciencedirect.com
Lutzweiler, G., Ndreu Halili, A., & Engin Vrana, N. (2020). The overview of porous, bioactive scaffolds as instructive biomaterials for tissue regeneration and their clinical translation. Pharmaceutics. mdpi.com
Zhang, L., Song, B., Yang, L., & Shi, Y. (2020). Tailored mechanical response and mass transport characteristic of selective laser melted porous metallic biomaterials for bone scaffolds. Acta Biomaterialia. ssrn.com
Fu, J., Thomas, H. R., & Li, C. (2021). Tortuosity of porous media: Image analysis and physical simulation. Earth-Science Reviews. researchgate.net
Wang, Y., Yan, L., Dastafkan, K., Zhao, C., Zhao, X., Xue, Y., ... & Zhai, Q. (2021). Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation. Advanced Materials, 33(8), 2006351. [HTML]
Wang, J., Gao, H., Hu, Y., Zhang, N., Zhou, W., Wang, C., ... & Yang, Z. (2021). 3D printing of Pickering emulsion inks to construct poly (D, L-lactide-co-trimethylene carbonate)-based porous bioactive scaffolds with shape memory effect. Journal of Materials Science, 56, 731-745. [HTML]
Huo, S., Zhao, Y., Zong, M., Liang, B., Zhang, X., Khan, I. U., & Li, K. (2020). Enhanced supercapacitor and capacitive deionization boosted by constructing inherent N and P external defects in porous carbon framework with a hierarchical porosity. Electrochimica Acta, 353, 136523. [HTML]
He, Y., Guo, H., Hwang, S., Yang, X., He, Z., Braaten, J., ... & Wu, G. (2020). Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high‐power PGM‐free cathodes in fuel cells. Advanced Materials, 32(46), 2003577. wiley.com
Xiang, B., Zhang, R., Luo, Y., Zhang, S., Xu, L., Min, H., ... & Meng, X. (2021). 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy, 81, 105600. [HTML]
Feng, J., Fu, J., Yao, X., & He, Y. (2022). Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. International Journal of Extreme Manufacturing, 4(2), 022001. iop.org
Mills, N., Jenkins, M., & Kukureka, S. (2020). Plastics: microstructure and engineering applications. [HTML]
Pipintakos, G., Sreeram, A., Mirwald, J., & Bhasin, A. (2024). Engineering bitumen for future asphalt pavements: A review of chemistry, structure and rheology. Materials & Design. sciencedirect.com
Xing, F., Bi, Z., Su, F., Liu, F., & Wu, Z. S. (2022). Unraveling the design principles of battery‐supercapacitor hybrid devices: from fundamental mechanisms to microstructure engineering and challenging perspectives. Advanced Energy Materials. [HTML]
Wu, W., Xia, R., Qian, G., Liu, Z., Razavi, N., Berto, F., & Gao, H. (2023). Mechanostructures: Rational mechanical design, fabrication, performance evaluation, and industrial application of advanced structures. Progress in Materials Science, 131, 101021. sciencedirect.com
Lamelas, V., Rolland, M. B., Walbrühl, M., & Borgenstam, A. (2024). Microstructural stability of cemented carbides at high temperatures: Modeling the effect on the hot hardness. International Journal of Refractory Metals and Hard Materials, 106805. [HTML]
Pecci, R., Baiguera, S., Ioppolo, P., Bedini, R., & Del Gaudio, C. (2020). 3D printed scaffolds with random microarchitecture for bone tissue engineering applications: Manufacturing and characterization. Journal of the Mechanical Behavior of Biomedical Materials, 103, 103583. [HTML]
Kanwar, S., Al-Ketan, O., & Vijayavenkataraman, S. (2022). A novel method to design biomimetic, 3D printable stochastic scaffolds with controlled porosity for bone tissue engineering. Materials & Design. sciencedirect.com
Burnstine‐Townley, A., Eshel, Y., & Amdursky, N. (2020). Conductive scaffolds for cardiac and neuronal tissue engineering: governing factors and mechanisms. Advanced Functional Materials, 30(18), 1901369. [HTML]
Veletic, M., Apu, E. H., Simic, M., Bergsland, J., Balasingham, I., Contag, C. H., & Ashammakhi, N. (2022). Implants with sensing capabilities. Chemical Reviews, 122(21), 16329-16363. ntnu.no
Lu, X., Zhao, H., Qin, Y., Matios, E., Luo, J., Chen, R., ... & Li, W. (2023). Building Fast Ion-Conducting Pathways on 3D Metallic Scaffolds for High-Performance Sodium Metal Anodes. ACS nano, 17(11), 10665-10676. [HTML]
Prosolov, K. A., Komarova, E. G., Kazantseva, E. A., Luginin, N. A., Kashin, A. D., Uvarkin, P. V., & Sharkeev, Y. P. (2024). Enhanced Corrosion Resistance and Mechanical Durability of the Composite PLGA/CaP/Ti Scaffolds for Orthopedic Implants. Polymers, 16(6), 826. mdpi.com
Song, W., Zhao, D., Guo, F., Wang, J., Wang, Y., Wang, X., ... & Chen, L. (2024). Additive manufacturing of degradable metallic scaffolds for material-structure-driven diabetic maxillofacial bone regeneration. Bioactive Materials, 36, 413-426. sciencedirect.com
Wang, J., Zhu, H., Wang, S. H., & Zhang, Y. D. (2021). A review of deep learning on medical image analysis. Mobile Networks and Applications. [HTML]
Xie, X., Niu, J., Liu, X., Chen, Z., Tang, S., & Yu, S. (2021). A survey on incorporating domain knowledge into deep learning for medical image analysis. Medical Image Analysis. [PDF]
Bhattacharya, S., Maddikunta, P. K. R., Pham, Q. V., Gadekallu, T. R., Chowdhary, C. L., Alazab, M., & Piran, M. J. (2021). Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey. Sustainable cities and society, 65, 102589. nih.gov
Suganyadevi, S., Seethalakshmi, V., & Balasamy, K. (2022). A review on deep learning in medical image analysis. International Journal of Multimedia Information Retrieval, 11(1), 19-38. springer.com
Sarvamangala, D. R. & Kulkarni, R. V. (2022). Convolutional neural networks in medical image understanding: a survey. Evolutionary intelligence. springer.com
Olăreț, E., Stancu, I. C., Iovu, H., & Serafim, A. (2021). Computed tomography as a characterization tool for engineered scaffolds with biomedical applications. Materials. mdpi.com
Patil, S. J., Thorat, V. M., Koparde, A. A., Bhosale, R. R., Bhinge, S. D., Chavan, D. D., & Tiwari, D. D. (2024). Theranostic applications of scaffolds in current biomedical research. Cureus, 16(10), e71694. nih.gov
Kalidindi, S. (2024). The role of three-dimensional (3D) printing in plastic and reconstructive surgery: innovations and applications. European Journal of Plastic Surgery. [HTML]
Kacprzak, B., Rosińska, K., & Siuba-Jarosz, N. (2023). Hyalofast cartilage repair surgery with a full load-bearing rehabilitation program one day after operation reduces the time for professional athletes to return to play. Medicina. mdpi.com
Xu, J., Wu, B., Huang, J., Gong, Y., Zhang, Y., & Liu, B. (2024). Practical Applications of Advanced Cloud Services and Generative AI Systems in Medical Image Analysis. arXiv preprint arXiv:2403.17549. [PDF]
Reddy, R. R., & Pranav, A. (2024). Rare Earth Element (REE) Insights for Health and Diagnostic Imaging. Rare Earth: A tribute to the late Mr. Rare Earth, Professor Karl Gschneidner, 164, 230-256. mrforum.com
Hu, Q., Wang, T., Chen, Y., Wei, D., Cui, T., Mei, L., ... & Niu, X. (2022). Medicine and engineering collaboration in urogynecology: a narrative review. Gynecology and Pelvic Medicine, 5. amegroups.org
Pawelec, K. M., Chakravarty, S., Hix, J. M., Perry, K. L., van Holsbeeck, L., Fajardo, R., & Shapiro, E. M. (2021). Design considerations to facilitate clinical radiological evaluation of implantable biomedical structures. ACS biomaterials science & engineering, 7(2), 718-726. nih.gov
Meng, M., Wang, J., Huang, H., Liu, X., Zhang, J., & Li, Z. (2023). 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. Journal of Orthopaedic Translation, 42, 94-112. sciencedirect.com
Laubach, M., Hildebrand, F., Suresh, S., Wagels, M., Kobbe, P., Gilbert, F., ... & Hutmacher, D. W. (2023). The concept of scaffold-guided bone regeneration for the treatment of long bone defects: current clinical application and future perspective. Journal of Functional Biomaterials, 14(7), 341. mdpi.com
Zhou, J., See, C. W., Sreenivasamurthy, S., & Zhu, D. (2023). Customized additive manufacturing in bone scaffolds—the gateway to precise bone defect treatment. Research. science.org
Farazin, A., & Mahjoubi, S. (2024). Dual-functional hydroxyapatite scaffolds for bone regeneration and precision drug delivery. Journal of the Mechanical Behavior of Biomedical Materials, 106661. [HTML]
Pallares, R. M., Charrier, M., Tejedor-Sanz, S., Li, D., Ashby, P. D., Ajo-Franklin, C. M., ... & Abergel, R. J. (2022). Precision engineering of 2D protein layers as chelating biogenic scaffolds for selective recovery of rare-earth elements. Journal of the American Chemical Society, 144(2), 854-861. escholarship.org
Wang, N., Fuh, J. Y. H., Dheen, S. T., & Senthil Kumar, A. (2021). Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109(2), 160-179. [HTML]
Li, F., Li, S., Liu, Y., Zhang, Z., & Li, Z. (2022). Current advances in the roles of doped bioactive metal in biodegradable polymer composite scaffolds for bone repair: A mini review. Advanced Engineering Materials, 24(8), 2101510. [HTML]
Aggarwal, D., Kumar, V., & Sharma, S. (2022). Drug-loaded biomaterials for orthopedic applications: A review. Journal of Controlled Release. [HTML]
Bharathi, R., Ganesh, S. S., Harini, G., Vatsala, K., Anushikaa, R., Aravind, S., ... & Selvamurugan, N. (2022). Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. International Journal of Biological Macromolecules, 222, 132-153. [HTML]
Ranakoti, L., Gangil, B., Bhandari, P., Singh, T., Sharma, S., Singh, J., & Singh, S. (2023). Promising role of polylactic acid as an ingenious biomaterial in scaffolds, drug delivery, tissue engineering, and medical implants: research developments, and prospective applications. Molecules, 28(2), 485. mdpi.com
Syed, M. H., Zahari, M. A. K. M., Khan, M. M. R., Beg, M. D. H., & Abdullah, N. (2023). An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. Journal of drug delivery science and technology, 80, 104121. waikato.ac.nz
Kunrath, M. F., Shah, F. A., & Dahlin, C. (2023). Bench-to-bedside: feasibility of nano-engineered and drug-delivery biomaterials for bone-anchored implants and periodontal applications. Materials Today Bio. sciencedirect.com
Berg, D. & Frossard, L. (2021). Health service delivery and economic evaluation of limb lower bone-anchored prostheses: A summary of the Queensland artificial limb service's experience. Canadian Prosthetics & Orthotics Journal. nih.gov
Barik, A. & Chakravorty, N. (2020). Targeted drug delivery from titanium implants: a review of challenges and approaches. Trends in Biomedical Research. researchgate.net
Meng, F., Yin, Z., Ren, X., Geng, Z., & Su, J. (2022). Construction of local drug delivery system on titanium-based implants to improve osseointegration. Pharmaceutics. mdpi.com
Ma, X., Gao, Y., Zhao, D., Zhang, W., Zhao, W., Wu, M., ... & Ma, C. (2021). Titanium implants and local drug delivery systems become mutual promoters in orthopedic clinics. Nanomaterials, 12(1), 47. mdpi.com
Chauhan, A., Alam, M. A., Kaur, A., & Malviya, R. (2023). Advancements and utilizations of scaffolds in tissue engineering and drug delivery. Current Drug Targets. [HTML]
Li, L., Hao, R., Qin, J., Song, J., Chen, X., Rao, F., ... & Xue, J. (2022). Electrospun fibers control drug delivery for tissue regeneration and cancer therapy. Advanced Fiber Materials, 4(6), 1375-1413. springer.com
Pavan Kalyan, B. G. & Kumar, L. (2022). 3D printing: applications in tissue engineering, medical devices, and drug delivery. Aaps Pharmscitech. springer.com
Castillo-Henríquez, L., Castro-Alpízar, J., Lopretti-Correa, M., & Vega-Baudrit, J. (2021). Exploration of bioengineered scaffolds composed of thermo-responsive polymers for drug delivery in wound healing. International Journal of Molecular Sciences, 22(3), 1408. mdpi.com
Osouli-Bostanabad, K., Masalehdan, T., Kapsa, R. M., Quigley, A., Lalatsa, A., Bruggeman, K. F., ... & Nisbet, D. R. (2022). Traction of 3D and 4D printing in the healthcare industry: from drug delivery and analysis to regenerative medicine. ACS Biomaterials Science & Engineering, 8(7), 2764-2797. strath.ac.uk
Chin, J. S. (2022). Scaffold-mediated non-viral delivery of nucleic acids for sustained gene silencing in regenerative medicine. ntu.edu.sg
Kiselevskiy, M. V., Anisimova, N. Y., Kapustin, A. V., Ryzhkin, A. A., Kuznetsova, D. N., Polyakova, V. V., & Enikeev, N. A. (2023). Additive Manufacturing Approaches to Design Pore Structures for Development of Bioactive Scaffolds for Orthopedic Applications: A Critical Review. preprints.org
Kazimierczak, P., Wessely-Szponder, J., Palka, K., Barylyak, A., Zinchenko, V., & Przekora, A. (2023). Hydroxyapatite or fluorapatite—which bioceramic is better as a base for the production of bone scaffold?—A comprehensive comparative study. International Journal of Molecular Sciences, 24(6), 5576. mdpi.com
Elgharbawy, H., Hassona, A., & Morsy, R. (2024). Synthesis and biophysical characterization of porous bi-phase calcium phosphate/gelatin-PVA scaffold: Enhanced antibacterial, osteoconductivity and anticancer …. Journal of Molecular Structure. [HTML]
Gašparovič, M., Jungová, P., Tomášik, J., Mriňáková, B., Hirjak, D., Timková, S., ... & Thurzo, A. (2024). Evolving Strategies and Materials for Scaffold Development in Regenerative Dentistry. Applied Sciences, 14(6), 2270. mdpi.com
Hassan, N., Krieg, T., Kopp, A., Bach, A. D., & Kröger, N. (2024). Challenges and Pitfalls of Research Designs Involving Magnesium-Based Biomaterials: An Overview. International Journal of Molecular Sciences, 25(11), 6242. mdpi.com
Astaneh, M. E. & Fereydouni, N. (2024). Silver Nanoparticles in 3D Printing: A New Frontier in Wound Healing. ACS omega. acs.org
Carbone, R., Ferrari, S., Callegarin, S., Casotti, F., Turina, L., Artioli, G., & Bonacaro, A. (2022). Peer support between healthcare workers in hospital and out-of-hospital settings: a scoping review. Acta Bio Medica: Atenei Parmensis, 93(5). nih.gov
Tolfo, F., Siqueira, H. C. H. D., Scarton, J., Cezar-Vaz, M. R., Santos, J. L. G. D., Rodrigues, S. T., & Pedroso, V. S. M. (2021). Obtaining tissues and organs: empowering actions of nurses in the light of ecosystem thinking. Revista brasileira de enfermagem, 74(2), e20200983. scielo.br
Jesus, J. A. & Balsanelli, A. P. (2023). Relationship between emergency nurses' professional competencies and the Nursing care product. Revista latino-americana de enfermagem. scielo.br
Serafini, F., Vettore, E., & Presotto, F. (2024). Area of admission and short-term care: is it still possible after the COVID pandemic?. Italian Journal of Medicine. italjmed.org
Lahmer, Y., Bouziri, H., & Aggoune-Mtalaa, W. (2021). Patient Transport and Mobile Health Workforce: Framework and Research Perspectives. In Innovations in Smart Cities Applications Volume 4: The Proceedings of the 5th International Conference on Smart City Applications (pp. 530-545). Springer International Publishing. [HTML]
Aparecido, C. C., de Sousa, E. A., Gullo, A. M., Inafuku, L. S., de Araujo, E. S., de Araujo, G. L., ... & Xavier, C. R. (2024). THE USE OF DISASTER SIMULATION IN THE FINAL EVALUATION OF NURSING POSTGRADUATE STUDENTS. In ICERI2024 Proceedings (pp. 5206-5212). IATED. [HTML]
Bouchlarhem, A., Bazid, Z., Ismaili, N., & El Ouafi, N. (2023). Cardiac intensive care unit: where we are in 2023. Frontiers in cardiovascular medicine, 10, 1201414. frontiersin.org
Van Daal, M., De Kanter, A. F. J., Bredenoord, A. L., & De Graeff, N. (2023). Personalized 3D printed scaffolds: the ethical aspects. New biotechnology, 78, 116-122. sciencedirect.com
Haude, M., Wlodarczak, A., van der Schaaf, R. J., Torzewski, J., Ferdinande, B., Escaned, J., ... & Waksman, R. (2023). Safety and performance of the third-generation drug-eluting resorbable coronary magnesium scaffold system in the treatment of subjects with de novo coronary artery lesions: 6-month results of the prospective, multicenter BIOMAG-I first-in-human study. EClinicalMedicine, 59. thelancet.com
Hassan, N., Krieg, T., Zinser, M., Schröder, K., & Kröger, N. (2023). An Overview of Scaffolds and Biomaterials for Skin Expansion and Soft Tissue Regeneration: Insights on Zinc and Magnesium as New Potential Key Elements. Polymers. mdpi.com
Golchin, A., Farzaneh, S., Porjabbar, B., Sadegian, F., Estaji, M., Ranjbarvan, P., ... & Hosseinzadeh, S. (2021). Regenerative medicine under the control of 3D scaffolds: Current state and progress of tissue scaffolds. Current Stem Cell Research & Therapy, 16(2), 209-229. [HTML]
Li, J., Qin, L., Yang, K., Ma, Z., Wang, Y., Cheng, L., & Zhao, D. (2020). Materials evolution of bone plates for internal fixation of bone fractures: A review. Journal of Materials Science & Technology, 36, 190-208. researchgate.net
Barber, C. C., Burnham, M., Ojameruaye, O., & McKee, M. D. (2021). A systematic review of the use of titanium versus stainless steel implants for fracture fixation. OTA International, 4(3), e138. lww.com
Kim, T., See, C. W., Li, X., & Zhu, D. (2020). Orthopedic implants and devices for bone fractures and defects: Past, present and perspective. Engineered Regeneration. sciencedirect.com
Yang, H., Qu, X., Wang, M., Cheng, H., Jia, B., Nie, J., ... & Zheng, Y. (2021). Zn-0.4 Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites. Chemical Engineering Journal, 417, 129317. monash.edu
Yang, N., Venezuela, J., Almathami, S., & Dargusch, M. (2022). Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: current status, challenges, and future prospects. Biomaterials. uq.edu.au
Ferrigno, B., Bordett, R., Duraisamy, N., Moskow, J., Arul, M. R., Rudraiah, S., ... & Kumbar, S. G. (2020). Bioactive polymeric materials and electrical stimulation strategies for musculoskeletal tissue repair and regeneration. Bioactive materials, 5(3), 468-485. sciencedirect.com
Mneimneh, A. T. & Mehanna, M. M. (2021). Collagen-based scaffolds: An auspicious tool to support repair, recovery, and regeneration post spinal cord injury. International Journal of Pharmaceutics. [HTML]
Negut, I., Dorcioman, G., & Grumezescu, V. (2020). Scaffolds for wound healing applications. Polymers. mdpi.com
Halim, A., Qu, K. Y., Zhang, X. F., & Huang, N. P. (2021). Recent advances in the application of two-dimensional nanomaterials for neural tissue engineering and regeneration. ACS Biomaterials Science & Engineering, 7(8), 3503-3529. [HTML]
Jiang, S., Guo, W., Tian, G., Luo, X., Peng, L., Liu, S., ... & Li, X. (2020). Clinical application status of articular cartilage regeneration techniques: tissue‐engineered cartilage brings new hope. Stem Cells International, 2020(1), 5690252. wiley.com
Laubach, M., Suresh, S., Herath, B., Wille, M. L., Delbrück, H., Alabdulrahman, H., ... & Hildebrand, F. (2022). Clinical translation of a patient-specific scaffold-guided bone regeneration concept in four cases with large long bone defects. Journal of Orthopaedic Translation, 34, 73-84. sciencedirect.com
Zurina, I. M., Presniakova, V. S., Butnaru, D. V., Svistunov, A. A., Timashev, P. S., & Rochev, Y. A. (2020). Tissue engineering using a combined cell sheet technology and scaffolding approach. Acta Biomaterialia, 113, 63-83. [HTML]
Mirhaj, M., Labbaf, S., Tavakoli, M., & Seifalian, A. M. (2022). Emerging treatment strategies in wound care. International Wound Journal, 19(7), 1934-1954. wiley.com
Al Mahmud, M. Z., Mobarak, M. H., Hossain, N., Islam, M. A., & Rayhan, M. T. (2023). Emerging breakthroughs in biomaterials for orthopedic applications: A comprehensive review. Bioprinting, e00323. [HTML]
Thanigaivel, S., Priya, A. K., Balakrishnan, D., Dutta, K., Rajendran, S., & Soto-Moscoso, M. (2022). Insight on recent development in metallic biomaterials: Strategies involving synthesis, types and surface modification for advanced therapeutic and biomedical applications. Biochemical Engineering Journal, 187, 108522. [HTML]
Al-Shalawi, F. D., Mohamed Ariff, A. H., Jung, D. W., Mohd Ariffin, M. K. A., Seng Kim, C. L., Brabazon, D., & Al-Osaimi, M. O. (2023). Biomaterials as implants in the orthopedic field for regenerative medicine: metal versus synthetic polymers. Polymers, 15(12), 2601. mdpi.com
Bandyopadhyay, A., Mitra, I., Goodman, S. B., Kumar, M., & Bose, S. (2023). Improving biocompatibility for next generation of metallic implants. Progress in materials science, 133, 101053. sciencedirect.com
Zhang, X., Chen, X., Hong, H., Hu, R., Liu, J., & Liu, C. (2022). Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioactive materials. sciencedirect.com
Zhang, F. & King, M. W. (2020). Biodegradable polymers as the pivotal player in the design of tissue engineering scaffolds. Advanced healthcare materials. [HTML]
Lett, J. A., Sagadevan, S., Fatimah, I., Hoque, M. E., Lokanathan, Y., Léonard, E., ... & Oh, W. C. (2021). Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. European Polymer Journal, 148, 110360. rug.nl
Valdoz, J. C., Johnson, B. C., Jacobs, D. J., Franks, N. A., Dodson, E. L., Sanders, C., ... & Van Ry, P. M. (2021). The ECM: to scaffold, or not to scaffold, that is the question. International Journal of Molecular Sciences, 22(23), 12690. mdpi.com
Kirillova, A., Yeazel, T. R., Asheghali, D., Petersen, S. R., Dort, S., Gall, K., & Becker, M. L. (2021). Fabrication of biomedical scaffolds using biodegradable polymers. Chemical reviews, 121(18), 11238-11304. [HTML]
Chinta, M. L., Velidandi, A., Pabbathi, N. P. P., Dahariya, S., & Parcha, S. R. (2021). Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review. International journal of biological macromolecules, 175, 495-515. [HTML]
Krishani, M., Shin, W. Y., Suhaimi, H., & Sambudi, N. S. (2023). Development of scaffolds from bio-based natural materials for tissue regeneration applications: a review. Gels. mdpi.com
Abdollahiyan, P., Oroojalian, F., Hejazi, M., de la Guardia, M., & Mokhtarzadeh, A. (2021). Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. Journal of controlled release, 333, 391-417. [HTML]
Ravoor, J., Thangavel, M., & Elsen S, R. (2021). Comprehensive review on design and manufacturing of bio-scaffolds for bone reconstruction. ACS applied bio materials. google.com
Sharma, D., Saha, S., & Satapathy, B. K. (2022). Recent advances in polymer scaffolds for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 33(3), 342-408. [HTML]
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Fatimah Ali Alabbad, Abeer ali Hussain Alslameen, Manal Ali Alwaif, Awadh Salem Alswar, Nourah Hassan J Alfandi, Sahar Saleh Alenazi, Afaf nwaifa Al Ruwaili, Bader Saad Obaid Alharbi, Saeed Shayea Saeed Al Dosari, Fahad Ahmed Alaqil

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their published articles online (e.g., in institutional repositories or on their website, social networks like ResearchGate or Academia), as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.