Advances in Metallurgical Technology for Radiology, Laboratory Sciences, Pharmacy, and Healthcare Information Management: A Multidisciplinary Perspective

Authors

  • Kamal Mohammad Reda Kadhim Al Mirza Radiology department, Qatif Central Hospital, Saudi Arabia
  • Ayman Mohammad Reda Kadhim Al Mirza Radiographer, Dammam madical complex, Saudi Arabia
  • Fatima Adel Al Radwan Health information, Maternity and Children Hospital, Saudi Arabia
  • Mustafa Kadem Almirza Pharmacist, Supply chain in eastern health cluster, Saudi Arabia
  • Jaafar Moussa Jaafar Al Hamdan Radiographer, Dammam madical complex, Saudi Arabia
  • Adel Salman Althnayan Laboratory specialist, Supply chain in eastern health cluster, Saudi Arabia
  • Nasser Yousef Ahmed Al Saleh Lab technician, Supply chain in eastern health cluster, Saudi Arabia
  • Taha Abbas Alhofufi Pharmacy technician, Supply chain in eastern health cluster, Saudi Arabia
  • Hassan Ali Al julaih

DOI:

https://doi.org/10.63278/10.63278/mme.v31.1

Keywords:

Metallurgical technology, healthcare innovation, biocompatible implants, medical devices, radiology, laboratory sciences, pharmacy, healthcare information management, public health, advanced alloys.

Abstract

Metallurgical and materials engineering plays a pivotal role in advancing healthcare technologies. From the development of biocompatible implants and medical devices to innovations in radiological imaging, laboratory sciences, pharmacy, and healthcare information management, metallurgical advancements have revolutionized medical practices. This multidisciplinary review explores the integration of metallurgical technologies across healthcare sectors, emphasizing the use of advanced metals and alloys, their applications in diagnostic and therapeutic tools, and their contributions to public health systems, particularly in safety, efficiency, and sustainability. The implications for cross-disciplinary collaborations and the alignment with global healthcare goals are also highlighted.

References

Munir, K., Biesiekierski, A., Wen, C., & Li, Y. (2020). Powder metallurgy in manufacturing of medical devices. In Metallic Biomaterials Processing and Medical Device Manufacturing (pp. 159-190). Woodhead Publishing. [HTML]

Dehghan-Manshadi, A., Yu, P., Dargusch, M., StJohn, D., & Qian, M. (2020). Metal injection moulding of surgical tools, biomaterials and medical devices: A review. Powder Technology, 364, 189-204. academia.edu

Fe-Perdomo, I. L., Ramos-Grez, J. A., Beruvides, G., & Mujica, R. A. (2021). Selective laser melting: lessons from medical devices industry and other applications. Rapid Prototyping Journal, 27(10), 1801-1830. [HTML]

Murr, L. E. (2020). Metallurgy principles applied to powder bed fusion 3D printing/additive manufacturing of personalized and optimized metal and alloy biomedical implants: An …. Journal of Materials Research and Technology. sciencedirect.com

Sultana, A., Zare, M., Luo, H., & Ramakrishna, S. (2021). Surface engineering strategies to enhance the in situ performance of medical devices including atomic scale engineering. International Journal of Molecular Sciences, 22(21), 11788. mdpi.com

Dobrzański, L. A., Dobrzańska-Danikiewicz, A. D., & Dobrzański, L. B. (2021). Effect of biomedical materials in the implementation of a long and healthy life policy. Processes, 9(5), 865. mdpi.com

Abdel-Basset, M., Chang, V., & Nabeeh, N. A. (2021). An intelligent framework using disruptive technologies for COVID-19 analysis. Technological Forecasting and Social Change, 163, 120431. nih.gov

Sood, K., Kaur, B., & Grima, S. (2022). Revamping Indian non-life insurance industry with a trusted network: Blockchain technology. In Big Data: A game changer for insurance industry (pp. 213-228). Emerald Publishing Limited. [HTML]

Li, L. (2022). Reskilling and upskilling the future-ready workforce for industry 4.0 and beyond. Information Systems Frontiers. springer.com

Chiu, T. K., Meng, H., Chai, C. S., King, I., Wong, S., & Yam, Y. (2021). Creation and evaluation of a pretertiary artificial intelligence (AI) curriculum. IEEE Transactions on Education, 65(1), 30-39. ieee.org

Huseien, G. F. & Shah, K. W. (2022). A review on 5G technology for smart energy management and smart buildings in Singapore. Energy and AI. sciencedirect.com

Southworth, J., Migliaccio, K., Glover, J., Reed, D., McCarty, C., Brendemuhl, J., & Thomas, A. (2023). Developing a model for AI Across the curriculum: Transforming the higher education landscape via innovation in AI literacy. Computers and Education: Artificial Intelligence, 4, 100127. sciencedirect.com

Mhlanga, D. (2021). Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from …. Sustainability. mdpi.com

Lou, Z., Wang, L., Jiang, K., Wei, Z., & Shen, G. (2020). Reviews of wearable healthcare systems: Materials, devices and system integration. Materials Science and Engineering: R: Reports, 140, 100523. [HTML]

Park, Y. G., Lee, G. Y., Jang, J., Yun, S. M., Kim, E., & Park, J. U. (2021). Liquid metal‐based soft electronics for wearable healthcare. Advanced healthcare materials, 10(17), 2002280. [HTML]

Egbo, M. K. (2021). A fundamental review on composite materials and some of their applications in biomedical engineering. Journal of King Saud University-Engineering Sciences. sciencedirect.com

Eshkalak, S. K., Ghomi, E. R., Dai, Y., Choudhury, D., & Ramakrishna, S. (2020). The role of three-dimensional printing in healthcare and medicine. Materials & Design, 194, 108940. sciencedirect.com

Hosseini, E. S., Dervin, S., Ganguly, P., & Dahiya, R. (2020). Biodegradable materials for sustainable health monitoring devices. ACS applied bio materials, 4(1), 163-194. acs.org

Teymourian, H., Tehrani, F., Mahato, K., & Wang, J. (2021). Lab under the skin: microneedle based wearable devices. Advanced healthcare materials, 10(17), 2002255. [HTML]

Tarfaoui, M., Nachtane, M., Goda, I., Qureshi, Y., & Benyahia, H. (2020). 3D printing to support the shortage in personal protective equipment caused by COVID-19 pandemic. Materials, 13(15), 3339. mdpi.com

Ghimire, L. & Waller, E. (2023). The Future of Health Physics: Trends, Challenges, and Innovation. Health Physics. [HTML]

Liang, W., Zhou, C., Zhang, H., Bai, J., Jiang, B., Jiang, C., ... & Zhao, J. (2023). Recent advances in 3D printing of biodegradable metals for orthopaedic applications. Journal of Biological Engineering, 17(1), 56. springer.com

Althumayri, M., Das, R., Banavath, R., Beker, L., Achim, A. M., & Ceylan Koydemir, H. (2024). Recent Advances in Transparent Electrodes and Their Multimodal Sensing Applications. Advanced Science, 11(38), 2405099. wiley.com

Yang, W., Liu, S., Deng, L., Luo, D., Ran, Z., Chen, T., ... & Dai, K. (2024). Additive Manufacturing Technology Lends Wings to Orthopedic Clinical Treatment-The Innovative Development of Medical Additive Manufacturing in Shanghai Ninth People's Hospital. Additive Manufacturing Frontiers, 200176. sciencedirect.com

Adeleke, A. K., Montero, D. J. P., Ani, E. C., Olu-lawal, K. A., & Olajiga, O. K. (2024). Advances in ultraprecision diamond turning: techniques, applications, and future trends. Engineering Science & Technology Journal, 5(3), 740-749. fepbl.com

Aslam, M. M., Zakari, R. Y., Tufail, A., Ali, S., Kalinaki, K., & Shafik, W. (2024). Introduction to industry’s fourth revolution and its impacts on healthcare. Digital Transformation in Healthcare 5.0: Volume 1: IoT, AI and Digital Twin, 33. [HTML]

Rane, N., Choudhary, S., & Rane, J. (2023). Integrating leading-edge sensors for enhanced monitoring and controlling in architecture, engineering and construction: a review. Available at SSRN 4644138. ssrn.com

Shamsolhodaei, A., Oliveira, J. P., Panton, B., Ballesteros, B., Schell, N., & Zhou, Y. N. (2021). Superelasticity preservation in dissimilar joint of NiTi shape memory alloy to biomedical PtIr. Materialia, 16, 101090. ssrn.com

Li, B., Zheng, L. J., & Zhang, H. (2024). Microstructure-property relationship in Zr-alloyed Ni-rich NiTi alloys: Enhancements in high-temperature stability and superelasticity. Materials Characterization. [HTML]

Lu, H. Z., Ma, H. W., Cai, W. S., Luo, X., Wang, Z., Song, C. H., ... & Yang, C. (2021). Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50. 4Ti49. 6 shape memory alloy fabricated via selective laser melting. Acta Materialia, 219, 117261. [HTML]

Liu, S., Zhu, J., Lin, X., Wang, X., & Wang, G. (2021). Coupling effect of stretch-bending deformation and electric pulse treatment on phase transformation behavior and superelasticity of a Ti-50.8 at.% Ni alloy. Materials Science and Engineering: A, 799, 140164. [HTML]

Dutkiewicz, J., Rogal, Ł., Kalita, D., Węglowski, M., Błacha, S., Berent, K., ... & Czujko, T. (2020). Superelastic effect in NiTi alloys manufactured using electron beam and focused laser rapid manufacturing methods. Journal of Materials Engineering and Performance, 29, 4463-4473. springer.com

Jawed, S. F., Liu, Y. J., Wang, J. C., Rabadia, C. D., Wang, L. Q., Li, Y. H., ... & Zhang, L. C. (2020). Tailoring deformation and superelastic behaviors of beta-type Ti-Nb-Mn-Sn alloys. Journal of the Mechanical Behavior of Biomedical Materials, 110, 103867. myqcloud.com

Mukunda, S. (2021). Influence of Heat-Treatment on Structure and Properties of Nickel Titanium Alloy. nitk.ac.in

Li, Z., Zhang, Y., Dong, K., & Zhang, Z. (2022). Research progress of Fe-based superelastic alloys. Crystals. mdpi.com

Izah, S. C. (2024). Herbal medicine phytochemistry: applications and trends. [HTML]

Khang, A. (2023). AI and IoT-based technologies for precision medicine. [HTML]

Karunarathna, I., Gunasena, P., Hapuarachchi, T., & Gunathilake, S. (2024). The role of scientific hypotheses in shaping modern research and innovation. researchgate.net

Brandt, A. M. & Gardner, M. (2020). The golden age of medicine?. Medicine in the twentieth century. [HTML]

Akhmedov, A. T. (2022). COMPARATIVE EVALUATION OF IMMUNOLOGICAL PARAMETERS OF LABORATORY ANIMALS WITH THYMUS AUTOIMPLANTATION IN THE DYNAMICS OF OBSERVATION. International Journal of Medical Sciences And Clinical Research, 2(11), 12-18. inlibrary.uz

Ciotti, M., Ciccozzi, M., Terrinoni, A., Jiang, W. C., Wang, C. B., & Bernardini, S. (2020). The COVID-19 pandemic. Critical reviews in clinical laboratory sciences, 57(6), 365-388. [HTML]

Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., ... & Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC medical education, 23(1), 689. springer.com

Abraham, J. (2023). Science, politics and the pharmaceutical industry: Controversy and bias in drug regulation. [HTML]

Angelo, P. C., Subramanian, R., & Ravisankar, B. (2022). Powder metallurgy: science, technology and applications. [HTML]

Okolie, J. A., Patra, B. R., Mukherjee, A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2021). Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy. International journal of hydrogen energy, 46(13), 8885-8905. google.com

Lario Femenia, J., Poler Escoto, R., & Amigó Borras, V. (2023). Powder Metallurgy: A New Path for Advanced Titanium Alloys in the EU Medical Device Supply Chain. Metals. mdpi.com

Das, P., Pathak, D. K., Sharma, P., & Pandey, P. M. (2024). A review on the mechanical and biocorrosion behaviour of iron and zinc-based biodegradable materials fabricated using powder metallurgy routes. Corrosion Reviews. degruyter.com

Toshpolatovich, P. S. (2023). Increasing The Abrasion Resistance Of Hard Alloys Used In The Mining And Metallurgical Industry By Adding Ultradisperse Modifiers. Journal of Pharmaceutical Negative Results. pnrjournal.com

Chalaris, M., Gkika, D. A., Tolkou, A. K., & Kyzas, G. Z. (2023). Advancements and sustainable strategies for the treatment and management of wastewaters from metallurgical industries: an overview. Environmental Science and Pollution Research, 30(57), 119627-119653. springer.com

Palit, S. & Hussain, C. M. (2021). Minerals and metal industry in the global scenario and environmental sustainability. Sustainable resource management. [HTML]

Tarighati Sareshkeh, A., Seyed Dorraji, M. S., Karami, Z., Shahmoradi, S., Fekri, E., Daneshvar, H., ... & Karimov, D. N. (2023). Preparation of high-crystalline and non-metal modified g-C3N4 for improving ultrasound-accelerated white-LED-light-driven photocatalytic performances. Scientific Reports, 13(1), 15079. nature.com

Zhang, H., Li, S., & Ma, X. (). Transforming Healthcare with Nanomedicine: A SWOT Analysis of Drug Delivery Innovation. Drug Design. tandfonline.com

Gugua, E. C., Ujah, C. O., Asadu, C. O., Von Kallon, D. V., & Ekwueme, B. N. (2024). Electroplating in the modern era, improvements and challenges: A review. Hybrid Advances, 100286. sciencedirect.com

Kumar, S. (2024). Prospects and challenges of nanomaterials in sustainable food preservation and packaging: a review. Discover Nano. springer.com

Talreja, N., Chauhan, D., & Ashfaq, M. (2024). Two-dimensional Hybrid Composites: Synthesis, Properties and Applications. [HTML]

Zhang, Y., Poon, K., Masonsong, G. S. P., Ramaswamy, Y., & Singh, G. (2023). Sustainable nanomaterials for biomedical applications. Pharmaceutics, 15(3), 922. mdpi.com

Sousa, A. F., Patrício, R., Terzopoulou, Z., Bikiaris, D. N., Stern, T., Wenger, J., ... & Guigo, N. (2021). Recommendations for replacing PET on packaging, fiber, and film materials with biobased counterparts. Green Chemistry, 23(22), 8795-8820. rsc.org

Zhang, H., Fan, T., Chen, W., Li, Y., & Wang, B. (2020). Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioactive Materials. sciencedirect.com

Adul-Rasool, A. A., Athair, D. M., Zaidan, H. K., Rheima, A. M., Al-Sharify, Z. T., & Mohammed, S. H. (2024). 0, 1, 2, 3D nanostructures, Types of bulk nanostructured materials, and drug nanocrystals: an overview. Cancer Treatment and Research Communications, 100834. sciencedirect.com

Limongi, T., Susa, F., Allione, M., & Di Fabrizio, E. (2020). Drug delivery applications of three-dimensional printed (3DP) mesoporous scaffolds. Pharmaceutics. mdpi.com

Chen, S. H., Bell, D. R., & Luan, B. (2022). Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Advanced drug delivery reviews. nih.gov

Zhao, Y., Das, S., Sekine, T., Mabuchi, H., Irie, T., Sakai, J., ... & Negishi, Y. (2023). Record ultralarge‐pores, low density three‐dimensional covalent organic framework for controlled drug delivery. Angewandte Chemie International Edition, 62(13), e202300172. wiley.com

Pourmadadi, M., Tajiki, A., Hosseini, S. M., Samadi, A., Abdouss, M., Daneshnia, S., & Yazdian, F. (2022). A comprehensive review of synthesis, structure, properties, and functionalization of MoS2; emphasis on drug delivery, photothermal therapy, and tissue engineering applications. Journal of Drug Delivery Science and Technology, 76, 103767. escholarship.org

Jain, K. K. (2020). An overview of drug delivery systems. Drug delivery systems. [HTML]

Grigoletto, A., Tedeschini, T., Canato, E., & Pasut, G. (2021). The evolution of polymer conjugation and drug targeting for the delivery of proteins and bioactive molecules. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 13(3), e1689. academia.edu

Rütter, M., Milošević, N., & David, A. (2021). Say no to drugs: Bioactive macromolecular therapeutics without conventional drugs. Journal of Controlled Release. [HTML]

Negreanu-Pirjol, B. S., Negreanu-Pirjol, T., Popoviciu, D. R., Anton, R. E., & Prelipcean, A. M. (2022). Marine bioactive compounds derived from macroalgae as new potential players in drug delivery systems: a review. Pharmaceutics, 14(9), 1781. mdpi.com

Finbloom, J. A., Sousa, F., Stevens, M. M., & Desai, T. A. (2020). Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Advanced drug delivery reviews, 167, 89-108. nih.gov

Khan, M. I., Hossain, M. I., Hossain, M. K., Rubel, M. H. K., Hossain, K. M., Mahfuz, A. M. U. B., & Anik, M. I. (2022). Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Applied Bio Materials, 5(3), 971-1012. [HTML]

Braatz, D., Cherri, M., Tully, M., Dimde, M., Ma, G., Mohammadifar, E., ... & Haag, R. (2022). Chemical approaches to synthetic drug delivery systems for systemic applications. Angewandte Chemie International Edition, 61(49), e202203942. wiley.com

Awuor, N. O., Weng, C., & Militar, R. (2022). Teamwork competency and satisfaction in online group project-based engineering course: The cross-level moderating effect of collective efficacy and flipped …. Computers & Education. [HTML]

Arinez, J. F., Chang, Q., Gao, R. X., Xu, C., & Zhang, J. (2020). Artificial intelligence in advanced manufacturing: Current status and future outlook. Journal of Manufacturing Science and Engineering, 142(11), 110804. asme.org

Penuel, W. R., Riedy, R., Barber, M. S., Peurach, D. J., LeBouef, W. A., & Clark, T. (2020). Principles of collaborative education research with stakeholders: Toward requirements for a new research and development infrastructure. Review of Educational Research, 90(5), 627-674. researchgate.net

Haendel, M. A., Chute, C. G., Bennett, T. D., Eichmann, D. A., Guinney, J., Kibbe, W. A., ... & Gersing, K. R. (2021). The National COVID Cohort Collaborative (N3C): rationale, design, infrastructure, and deployment. Journal of the American Medical Informatics Association, 28(3), 427-443. oup.com

Xu, Z., Zhang, C., Wang, X., & Liu, D. (2021). Release strategies of silver ions from materials for bacterial killing. ACS applied bio materials. acs.org

Hamad, A., Khashan, K. S., & Hadi, A. (2020). Silver nanoparticles and silver ions as potential antibacterial agents. Journal of Inorganic and Organometallic Polymers and Materials, 30(12), 4811-4828. springer.com

Qin, Z., Zheng, Y., Wang, Y., Du, T., Li, C., Wang, X., & Jiang, H. (2021). Versatile roles of silver in Ag-based nanoalloys for antibacterial applications. Coordination Chemistry Reviews, 449, 214218. [HTML]

Biały, M., Hasiak, M., & Łaszcz, A. (2022). Review on biocompatibility and prospect biomedical applications of novel functional metallic glasses. Journal of Functional Biomaterials. mdpi.com

Cai, Z., Du, P., Li, K., Chen, L., & Xie, G. (2024). A review of the development of titanium-based and magnesium-based metallic glasses in the field of biomedical materials. Materials. mdpi.com

Bin, S. J. B., Fong, K. S., Chua, B. W., & Gupta, M. (2022). Mg-based bulk metallic glasses: A review of recent developments. Journal of Magnesium and Alloys. sciencedirect.com

Kiani, F., Wen, C., & Li, Y. (2020). Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites—A review. Acta biomaterialia. ssrn.com

Ibrahim, M. Z., Halilu, A., Sarhan, A. A., Kuo, T. Y., Yusuf, F., Shaikh, M. O., & Hamdi, M. (2022). In-vitro viability of laser cladded Fe-based metallic glass as a promising bioactive material for improved osseointegration of orthopedic implants. Medical Engineering & Physics, 102, 103782. [HTML]

Downloads

How to Cite

Kamal Mohammad Reda Kadhim Al Mirza, Ayman Mohammad Reda Kadhim Al Mirza, Fatima Adel Al Radwan, Mustafa Kadem Almirza, Jaafar Moussa Jaafar Al Hamdan, Adel Salman Althnayan, Nasser Yousef Ahmed Al Saleh, Taha Abbas Alhofufi, and Hassan Ali Al julaih. 2024. “Advances in Metallurgical Technology for Radiology, Laboratory Sciences, Pharmacy, and Healthcare Information Management: A Multidisciplinary Perspective”. Metallurgical and Materials Engineering 30 (4):11-25. https://doi.org/10.63278/10.63278/mme.v31.1.

Issue

Section

Research