Advances in Metallurgical Technology for Radiology, Laboratory Sciences, Pharmacy, and Healthcare Information Management: A Multidisciplinary Perspective
DOI:
https://doi.org/10.63278/10.63278/mme.v31.1Keywords:
Metallurgical technology, healthcare innovation, biocompatible implants, medical devices, radiology, laboratory sciences, pharmacy, healthcare information management, public health, advanced alloys.Abstract
Metallurgical and materials engineering plays a pivotal role in advancing healthcare technologies. From the development of biocompatible implants and medical devices to innovations in radiological imaging, laboratory sciences, pharmacy, and healthcare information management, metallurgical advancements have revolutionized medical practices. This multidisciplinary review explores the integration of metallurgical technologies across healthcare sectors, emphasizing the use of advanced metals and alloys, their applications in diagnostic and therapeutic tools, and their contributions to public health systems, particularly in safety, efficiency, and sustainability. The implications for cross-disciplinary collaborations and the alignment with global healthcare goals are also highlighted.
References
Munir, K., Biesiekierski, A., Wen, C., & Li, Y. (2020). Powder metallurgy in manufacturing of medical devices. In Metallic Biomaterials Processing and Medical Device Manufacturing (pp. 159-190). Woodhead Publishing. [HTML]
Dehghan-Manshadi, A., Yu, P., Dargusch, M., StJohn, D., & Qian, M. (2020). Metal injection moulding of surgical tools, biomaterials and medical devices: A review. Powder Technology, 364, 189-204. academia.edu
Fe-Perdomo, I. L., Ramos-Grez, J. A., Beruvides, G., & Mujica, R. A. (2021). Selective laser melting: lessons from medical devices industry and other applications. Rapid Prototyping Journal, 27(10), 1801-1830. [HTML]
Murr, L. E. (2020). Metallurgy principles applied to powder bed fusion 3D printing/additive manufacturing of personalized and optimized metal and alloy biomedical implants: An …. Journal of Materials Research and Technology. sciencedirect.com
Sultana, A., Zare, M., Luo, H., & Ramakrishna, S. (2021). Surface engineering strategies to enhance the in situ performance of medical devices including atomic scale engineering. International Journal of Molecular Sciences, 22(21), 11788. mdpi.com
Dobrzański, L. A., Dobrzańska-Danikiewicz, A. D., & Dobrzański, L. B. (2021). Effect of biomedical materials in the implementation of a long and healthy life policy. Processes, 9(5), 865. mdpi.com
Abdel-Basset, M., Chang, V., & Nabeeh, N. A. (2021). An intelligent framework using disruptive technologies for COVID-19 analysis. Technological Forecasting and Social Change, 163, 120431. nih.gov
Sood, K., Kaur, B., & Grima, S. (2022). Revamping Indian non-life insurance industry with a trusted network: Blockchain technology. In Big Data: A game changer for insurance industry (pp. 213-228). Emerald Publishing Limited. [HTML]
Li, L. (2022). Reskilling and upskilling the future-ready workforce for industry 4.0 and beyond. Information Systems Frontiers. springer.com
Chiu, T. K., Meng, H., Chai, C. S., King, I., Wong, S., & Yam, Y. (2021). Creation and evaluation of a pretertiary artificial intelligence (AI) curriculum. IEEE Transactions on Education, 65(1), 30-39. ieee.org
Huseien, G. F. & Shah, K. W. (2022). A review on 5G technology for smart energy management and smart buildings in Singapore. Energy and AI. sciencedirect.com
Southworth, J., Migliaccio, K., Glover, J., Reed, D., McCarty, C., Brendemuhl, J., & Thomas, A. (2023). Developing a model for AI Across the curriculum: Transforming the higher education landscape via innovation in AI literacy. Computers and Education: Artificial Intelligence, 4, 100127. sciencedirect.com
Mhlanga, D. (2021). Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from …. Sustainability. mdpi.com
Lou, Z., Wang, L., Jiang, K., Wei, Z., & Shen, G. (2020). Reviews of wearable healthcare systems: Materials, devices and system integration. Materials Science and Engineering: R: Reports, 140, 100523. [HTML]
Park, Y. G., Lee, G. Y., Jang, J., Yun, S. M., Kim, E., & Park, J. U. (2021). Liquid metal‐based soft electronics for wearable healthcare. Advanced healthcare materials, 10(17), 2002280. [HTML]
Egbo, M. K. (2021). A fundamental review on composite materials and some of their applications in biomedical engineering. Journal of King Saud University-Engineering Sciences. sciencedirect.com
Eshkalak, S. K., Ghomi, E. R., Dai, Y., Choudhury, D., & Ramakrishna, S. (2020). The role of three-dimensional printing in healthcare and medicine. Materials & Design, 194, 108940. sciencedirect.com
Hosseini, E. S., Dervin, S., Ganguly, P., & Dahiya, R. (2020). Biodegradable materials for sustainable health monitoring devices. ACS applied bio materials, 4(1), 163-194. acs.org
Teymourian, H., Tehrani, F., Mahato, K., & Wang, J. (2021). Lab under the skin: microneedle based wearable devices. Advanced healthcare materials, 10(17), 2002255. [HTML]
Tarfaoui, M., Nachtane, M., Goda, I., Qureshi, Y., & Benyahia, H. (2020). 3D printing to support the shortage in personal protective equipment caused by COVID-19 pandemic. Materials, 13(15), 3339. mdpi.com
Ghimire, L. & Waller, E. (2023). The Future of Health Physics: Trends, Challenges, and Innovation. Health Physics. [HTML]
Liang, W., Zhou, C., Zhang, H., Bai, J., Jiang, B., Jiang, C., ... & Zhao, J. (2023). Recent advances in 3D printing of biodegradable metals for orthopaedic applications. Journal of Biological Engineering, 17(1), 56. springer.com
Althumayri, M., Das, R., Banavath, R., Beker, L., Achim, A. M., & Ceylan Koydemir, H. (2024). Recent Advances in Transparent Electrodes and Their Multimodal Sensing Applications. Advanced Science, 11(38), 2405099. wiley.com
Yang, W., Liu, S., Deng, L., Luo, D., Ran, Z., Chen, T., ... & Dai, K. (2024). Additive Manufacturing Technology Lends Wings to Orthopedic Clinical Treatment-The Innovative Development of Medical Additive Manufacturing in Shanghai Ninth People's Hospital. Additive Manufacturing Frontiers, 200176. sciencedirect.com
Adeleke, A. K., Montero, D. J. P., Ani, E. C., Olu-lawal, K. A., & Olajiga, O. K. (2024). Advances in ultraprecision diamond turning: techniques, applications, and future trends. Engineering Science & Technology Journal, 5(3), 740-749. fepbl.com
Aslam, M. M., Zakari, R. Y., Tufail, A., Ali, S., Kalinaki, K., & Shafik, W. (2024). Introduction to industry’s fourth revolution and its impacts on healthcare. Digital Transformation in Healthcare 5.0: Volume 1: IoT, AI and Digital Twin, 33. [HTML]
Rane, N., Choudhary, S., & Rane, J. (2023). Integrating leading-edge sensors for enhanced monitoring and controlling in architecture, engineering and construction: a review. Available at SSRN 4644138. ssrn.com
Shamsolhodaei, A., Oliveira, J. P., Panton, B., Ballesteros, B., Schell, N., & Zhou, Y. N. (2021). Superelasticity preservation in dissimilar joint of NiTi shape memory alloy to biomedical PtIr. Materialia, 16, 101090. ssrn.com
Li, B., Zheng, L. J., & Zhang, H. (2024). Microstructure-property relationship in Zr-alloyed Ni-rich NiTi alloys: Enhancements in high-temperature stability and superelasticity. Materials Characterization. [HTML]
Lu, H. Z., Ma, H. W., Cai, W. S., Luo, X., Wang, Z., Song, C. H., ... & Yang, C. (2021). Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50. 4Ti49. 6 shape memory alloy fabricated via selective laser melting. Acta Materialia, 219, 117261. [HTML]
Liu, S., Zhu, J., Lin, X., Wang, X., & Wang, G. (2021). Coupling effect of stretch-bending deformation and electric pulse treatment on phase transformation behavior and superelasticity of a Ti-50.8 at.% Ni alloy. Materials Science and Engineering: A, 799, 140164. [HTML]
Dutkiewicz, J., Rogal, Ł., Kalita, D., Węglowski, M., Błacha, S., Berent, K., ... & Czujko, T. (2020). Superelastic effect in NiTi alloys manufactured using electron beam and focused laser rapid manufacturing methods. Journal of Materials Engineering and Performance, 29, 4463-4473. springer.com
Jawed, S. F., Liu, Y. J., Wang, J. C., Rabadia, C. D., Wang, L. Q., Li, Y. H., ... & Zhang, L. C. (2020). Tailoring deformation and superelastic behaviors of beta-type Ti-Nb-Mn-Sn alloys. Journal of the Mechanical Behavior of Biomedical Materials, 110, 103867. myqcloud.com
Mukunda, S. (2021). Influence of Heat-Treatment on Structure and Properties of Nickel Titanium Alloy. nitk.ac.in
Li, Z., Zhang, Y., Dong, K., & Zhang, Z. (2022). Research progress of Fe-based superelastic alloys. Crystals. mdpi.com
Izah, S. C. (2024). Herbal medicine phytochemistry: applications and trends. [HTML]
Khang, A. (2023). AI and IoT-based technologies for precision medicine. [HTML]
Karunarathna, I., Gunasena, P., Hapuarachchi, T., & Gunathilake, S. (2024). The role of scientific hypotheses in shaping modern research and innovation. researchgate.net
Brandt, A. M. & Gardner, M. (2020). The golden age of medicine?. Medicine in the twentieth century. [HTML]
Akhmedov, A. T. (2022). COMPARATIVE EVALUATION OF IMMUNOLOGICAL PARAMETERS OF LABORATORY ANIMALS WITH THYMUS AUTOIMPLANTATION IN THE DYNAMICS OF OBSERVATION. International Journal of Medical Sciences And Clinical Research, 2(11), 12-18. inlibrary.uz
Ciotti, M., Ciccozzi, M., Terrinoni, A., Jiang, W. C., Wang, C. B., & Bernardini, S. (2020). The COVID-19 pandemic. Critical reviews in clinical laboratory sciences, 57(6), 365-388. [HTML]
Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., ... & Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC medical education, 23(1), 689. springer.com
Abraham, J. (2023). Science, politics and the pharmaceutical industry: Controversy and bias in drug regulation. [HTML]
Angelo, P. C., Subramanian, R., & Ravisankar, B. (2022). Powder metallurgy: science, technology and applications. [HTML]
Okolie, J. A., Patra, B. R., Mukherjee, A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2021). Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy. International journal of hydrogen energy, 46(13), 8885-8905. google.com
Lario Femenia, J., Poler Escoto, R., & Amigó Borras, V. (2023). Powder Metallurgy: A New Path for Advanced Titanium Alloys in the EU Medical Device Supply Chain. Metals. mdpi.com
Das, P., Pathak, D. K., Sharma, P., & Pandey, P. M. (2024). A review on the mechanical and biocorrosion behaviour of iron and zinc-based biodegradable materials fabricated using powder metallurgy routes. Corrosion Reviews. degruyter.com
Toshpolatovich, P. S. (2023). Increasing The Abrasion Resistance Of Hard Alloys Used In The Mining And Metallurgical Industry By Adding Ultradisperse Modifiers. Journal of Pharmaceutical Negative Results. pnrjournal.com
Chalaris, M., Gkika, D. A., Tolkou, A. K., & Kyzas, G. Z. (2023). Advancements and sustainable strategies for the treatment and management of wastewaters from metallurgical industries: an overview. Environmental Science and Pollution Research, 30(57), 119627-119653. springer.com
Palit, S. & Hussain, C. M. (2021). Minerals and metal industry in the global scenario and environmental sustainability. Sustainable resource management. [HTML]
Tarighati Sareshkeh, A., Seyed Dorraji, M. S., Karami, Z., Shahmoradi, S., Fekri, E., Daneshvar, H., ... & Karimov, D. N. (2023). Preparation of high-crystalline and non-metal modified g-C3N4 for improving ultrasound-accelerated white-LED-light-driven photocatalytic performances. Scientific Reports, 13(1), 15079. nature.com
Zhang, H., Li, S., & Ma, X. (). Transforming Healthcare with Nanomedicine: A SWOT Analysis of Drug Delivery Innovation. Drug Design. tandfonline.com
Gugua, E. C., Ujah, C. O., Asadu, C. O., Von Kallon, D. V., & Ekwueme, B. N. (2024). Electroplating in the modern era, improvements and challenges: A review. Hybrid Advances, 100286. sciencedirect.com
Kumar, S. (2024). Prospects and challenges of nanomaterials in sustainable food preservation and packaging: a review. Discover Nano. springer.com
Talreja, N., Chauhan, D., & Ashfaq, M. (2024). Two-dimensional Hybrid Composites: Synthesis, Properties and Applications. [HTML]
Zhang, Y., Poon, K., Masonsong, G. S. P., Ramaswamy, Y., & Singh, G. (2023). Sustainable nanomaterials for biomedical applications. Pharmaceutics, 15(3), 922. mdpi.com
Sousa, A. F., Patrício, R., Terzopoulou, Z., Bikiaris, D. N., Stern, T., Wenger, J., ... & Guigo, N. (2021). Recommendations for replacing PET on packaging, fiber, and film materials with biobased counterparts. Green Chemistry, 23(22), 8795-8820. rsc.org
Zhang, H., Fan, T., Chen, W., Li, Y., & Wang, B. (2020). Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioactive Materials. sciencedirect.com
Adul-Rasool, A. A., Athair, D. M., Zaidan, H. K., Rheima, A. M., Al-Sharify, Z. T., & Mohammed, S. H. (2024). 0, 1, 2, 3D nanostructures, Types of bulk nanostructured materials, and drug nanocrystals: an overview. Cancer Treatment and Research Communications, 100834. sciencedirect.com
Limongi, T., Susa, F., Allione, M., & Di Fabrizio, E. (2020). Drug delivery applications of three-dimensional printed (3DP) mesoporous scaffolds. Pharmaceutics. mdpi.com
Chen, S. H., Bell, D. R., & Luan, B. (2022). Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Advanced drug delivery reviews. nih.gov
Zhao, Y., Das, S., Sekine, T., Mabuchi, H., Irie, T., Sakai, J., ... & Negishi, Y. (2023). Record ultralarge‐pores, low density three‐dimensional covalent organic framework for controlled drug delivery. Angewandte Chemie International Edition, 62(13), e202300172. wiley.com
Pourmadadi, M., Tajiki, A., Hosseini, S. M., Samadi, A., Abdouss, M., Daneshnia, S., & Yazdian, F. (2022). A comprehensive review of synthesis, structure, properties, and functionalization of MoS2; emphasis on drug delivery, photothermal therapy, and tissue engineering applications. Journal of Drug Delivery Science and Technology, 76, 103767. escholarship.org
Jain, K. K. (2020). An overview of drug delivery systems. Drug delivery systems. [HTML]
Grigoletto, A., Tedeschini, T., Canato, E., & Pasut, G. (2021). The evolution of polymer conjugation and drug targeting for the delivery of proteins and bioactive molecules. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 13(3), e1689. academia.edu
Rütter, M., Milošević, N., & David, A. (2021). Say no to drugs: Bioactive macromolecular therapeutics without conventional drugs. Journal of Controlled Release. [HTML]
Negreanu-Pirjol, B. S., Negreanu-Pirjol, T., Popoviciu, D. R., Anton, R. E., & Prelipcean, A. M. (2022). Marine bioactive compounds derived from macroalgae as new potential players in drug delivery systems: a review. Pharmaceutics, 14(9), 1781. mdpi.com
Finbloom, J. A., Sousa, F., Stevens, M. M., & Desai, T. A. (2020). Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Advanced drug delivery reviews, 167, 89-108. nih.gov
Khan, M. I., Hossain, M. I., Hossain, M. K., Rubel, M. H. K., Hossain, K. M., Mahfuz, A. M. U. B., & Anik, M. I. (2022). Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Applied Bio Materials, 5(3), 971-1012. [HTML]
Braatz, D., Cherri, M., Tully, M., Dimde, M., Ma, G., Mohammadifar, E., ... & Haag, R. (2022). Chemical approaches to synthetic drug delivery systems for systemic applications. Angewandte Chemie International Edition, 61(49), e202203942. wiley.com
Awuor, N. O., Weng, C., & Militar, R. (2022). Teamwork competency and satisfaction in online group project-based engineering course: The cross-level moderating effect of collective efficacy and flipped …. Computers & Education. [HTML]
Arinez, J. F., Chang, Q., Gao, R. X., Xu, C., & Zhang, J. (2020). Artificial intelligence in advanced manufacturing: Current status and future outlook. Journal of Manufacturing Science and Engineering, 142(11), 110804. asme.org
Penuel, W. R., Riedy, R., Barber, M. S., Peurach, D. J., LeBouef, W. A., & Clark, T. (2020). Principles of collaborative education research with stakeholders: Toward requirements for a new research and development infrastructure. Review of Educational Research, 90(5), 627-674. researchgate.net
Haendel, M. A., Chute, C. G., Bennett, T. D., Eichmann, D. A., Guinney, J., Kibbe, W. A., ... & Gersing, K. R. (2021). The National COVID Cohort Collaborative (N3C): rationale, design, infrastructure, and deployment. Journal of the American Medical Informatics Association, 28(3), 427-443. oup.com
Xu, Z., Zhang, C., Wang, X., & Liu, D. (2021). Release strategies of silver ions from materials for bacterial killing. ACS applied bio materials. acs.org
Hamad, A., Khashan, K. S., & Hadi, A. (2020). Silver nanoparticles and silver ions as potential antibacterial agents. Journal of Inorganic and Organometallic Polymers and Materials, 30(12), 4811-4828. springer.com
Qin, Z., Zheng, Y., Wang, Y., Du, T., Li, C., Wang, X., & Jiang, H. (2021). Versatile roles of silver in Ag-based nanoalloys for antibacterial applications. Coordination Chemistry Reviews, 449, 214218. [HTML]
Biały, M., Hasiak, M., & Łaszcz, A. (2022). Review on biocompatibility and prospect biomedical applications of novel functional metallic glasses. Journal of Functional Biomaterials. mdpi.com
Cai, Z., Du, P., Li, K., Chen, L., & Xie, G. (2024). A review of the development of titanium-based and magnesium-based metallic glasses in the field of biomedical materials. Materials. mdpi.com
Bin, S. J. B., Fong, K. S., Chua, B. W., & Gupta, M. (2022). Mg-based bulk metallic glasses: A review of recent developments. Journal of Magnesium and Alloys. sciencedirect.com
Kiani, F., Wen, C., & Li, Y. (2020). Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites—A review. Acta biomaterialia. ssrn.com
Ibrahim, M. Z., Halilu, A., Sarhan, A. A., Kuo, T. Y., Yusuf, F., Shaikh, M. O., & Hamdi, M. (2022). In-vitro viability of laser cladded Fe-based metallic glass as a promising bioactive material for improved osseointegration of orthopedic implants. Medical Engineering & Physics, 102, 103782. [HTML]
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Kamal Mohammad Reda Kadhim Al Mirza, Ayman Mohammad Reda Kadhim Al Mirza, Fatima Adel Al Radwan, Mustafa Kadem Almirza, Jaafar Moussa Jaafar Al Hamdan, Adel Salman Althnayan, Nasser Yousef Ahmed Al Saleh, Taha Abbas Alhofufi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their published articles online (e.g., in institutional repositories or on their website, social networks like ResearchGate or Academia), as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.