Microstructure and impression creep characteristics Al-9Si-xCu aluminum alloys

  • Mohsen Yousefi
  • Mehdi Dehnavi
  • S.M. Miresmaeili
Keywords: Al-9Si alloy, Impression creep, Microstructure, Climb controlled dislocation creep.

Abstract

The effects of 1.5, 2.5 and 3.5 wt.% Cu additions on the microstructure and creep behavior of the as-cast Al-9Si alloy were investigated by impression tests. The tests were performed at temperature ranging from 493 to 553 K and under punching stresses in the range 300 to 414 MPa for dwell times up to 3000 seconds. The results showed that, for all loads and temperatures, the Al–9Si–3.5Cu alloy had the lowest creep rates and thus, the highest creep resistance among all materials tested. This is attributed to the formation of hard intermetallic compound of Al2Cu, and higher amount of α-Al2Cu eutectic phase. The stress exponent and activation energy are in the ranges of 5.2- 7.2 and 115 -150 kJ/ mol, respectively for all alloys. According to the stress exponent and creep activation energies, the lattice and pipe diffusion- climb controlled dislocation creep were the dominant creep mechanism.

References

J. E. Hatch, American Society for Metals, Metals Park, OH, (1984) 143.

M. A. Moustafa, F. H. Samuel, H. W. Doty, S. Valtierr A, Int. J. Cast Metals Res14 (2002) 235-40

M. Hansen,“Constitution of Binary Alloys”, 2nd ed. (McGrawHill, New York, 1958) pp. 84.

L. F. Mondolfo, Butterworths, London, (1976).

Z. Li, A. M. Samuel, F. H. Samuel, J. Mat.Sci 38 (2003)1203 – 1218.

L. Peng, F. Yang, J. Nie, Mater. Sci. Eng A 410 (2005) 42–7

K. Milicka, P. Perez, F. Dobes, G. Garces, P. Adeva, Mater. Sci. Eng A 510-511 (2009) 377–81.

J. Guo, L. Chen, Y. Xu, F. Lian, Mater. Sci. Eng A 443(2007) 66–70.

B. Nami, H. Razavi, S.M. Miresmaeili, Sh. Mirdamadi, S.G. Shabestari, Scripta Mater 65 (2001) 221–4.

PM. Sargent, MF. Ashby, Mater. Sci. Technol 8 (1992) 594–601.

R. Mahmudi, AR. Granmayeh, M. Bakherad, M. Allami, Mater. Sci. Eng A 457 (2007) 173–9.

Chu SNG, Li JCM, Mater. Sci 12 (1977) 2200–8.

DH. Sastry, Mater. Sci. Eng A 409 (2005) 67–75.

F. Kabirian, R .Mahmudi, Met. Mater. Trans A 40 (2009) 116–27.

B. Nami, SG. Shabestari, SM. Miresmaeili, H. Razavi, Sh. Mirdamadi, J Alloys Compd 489 (2010) 570–5.

N. Kashefi, R. Mahmudi, Mater Des 39 (2012) 200–10.

AK .Mondale, S .Kumar, Compos Sci Technol 68 (2008) 3251–8.

B. Kondori, R. Mahmudi, Met. Mater. Trans A 40 (2007) 2007–15.

B. Nami, H. Razavi, S. Mirdamadi, SG. Shabestari, SM. Miresmaeili, Met. Mater. Trans A (2010)1973–82

A.K. Mukherjee, J.E. Bird, J.E. Dorn, Trans. ASM 62 (1969) 155–179.

R. Mahmudi, A. Karsaz, A. Akbari-Fakhrabadi, A.R. Geranmayeh, Mater. Sci. Eng A 527 (2010) 2702–2708.

H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, K. Higashi Mater. Sci. Eng A 407 (2005) 53–61.

HJ. Frost, MF. Ashby, New York, Pergamon Press (1982).

B. Amir esgandari, B. Nami, M. Shahmiri, A. Abedi, Trans. Nonferrous Met. Soc. China 23(2013) 2518−2523.

Section
Articles - archived