Aluminothermic production of titanium alloys (Part 2): Impact of activated rutile on process sustainability

  • S. Hassan-Pour
  • C. Vonderstein
  • M. Achimovičová
  • V. Vogt
  • E. Gock
  • B. Friedrich
Keywords: aluminothermic reduction, ilmenite, mechanical activation, titanium alloys


The aluminothermic process provides a cost-reduced production method for titanium and titanium alloys by reduction of TiO2 with subsequent refining by electroslag remelting The aluminothermy involves high heating rates, high temperatures and short reactions times combined with a self-propagating behaviour of the reaction. By co-reduction of TiO2 and oxides of alloying elements such as vanadium pentoxide, direct synthesis of a titanium alloy is possible. The use of rutile ore concentrates causes a further reduction of process steps. In order to charge rutile ore complex thermodynamic calculations are required taking enthalpy input of various bycomponents into account. The aluminothermic reduction is conventionally enhanced by a highly heatproviding reaction based on the reduction of KClO4. In order to minimize the use of chlorine-based products extensive studies are made to investigate the feasibility of using mechanically activated rutile as input material for the aluminothermic process. Due to the mechanical activation the intrinsic enthalpy of the reaction is increased thus facilitates a process with reduced amount of KClO4. A major challenge represents the determination of a compromise between low activation duration and reduced KClO4 amount. In order to define the process window parameters like intrinsic chemical energy (enthalpy of the reaction mixture), equilibrium temperature and physical properties (particle size and mixing degree) were optimized. After adjusting the process parameters it is possible to save up to 42 % KClO4 for the ATR reaction with 2h activated input material. This reduction of KClO4 material affects a decrease of the produced gaseous compounds and the subsequent off-gas cleaning system.


Maeda, M.: Aluminothermic Reduction of Titanium Oxide, Materials Transactions, The Japan Institute of Metals, Vol. 34, 1993, No. 7

Gock, E., Kähler, J., Vogt, V.: Produktionsintegrierter Umweltschutz bei der Aufbereitung und Aufarbeitung von Rohstoffen. In: Handbuch des Umweltschutzes und den Umweltschutztechnik, Band 2, Springer Verlag, Berlin-Heidelberg-New York 1996, ISBN 3-540-58059-X.

Gock, E., Jacob K.H.: Direkter Aufschluß von Rutil mit Schwefelsäure, Erzmetall 33, Nr.6, 1980, 308-314.

Gock, E.: Beitrag zur mechanischen Aktivierung von Titanomagnetit, Dissertation TU-Berlin, 1968.

Achimovičová, M., Gock, E., Turianicová, E., Kostova, N.G., Velinov, N., Kaňuchová, M., Baláž, P.: Study of the mechanochemical reduction of ilmenite concentrate by addition of aluminum. In: Acta Physica Polonica A, Vol.126, Issue 4 (2014) 867-870

Gock, E., v. Szantho, E.: Laugung von Rutil nach mechanischer Aktivierung in einer Schwingmühle, Erzmetall 23 (1970) 165-168.

Gock, E.: Auftragsuntersuchung für die Chemetall GmbH, Langelsheim 2007.

Dautzenberg, W.: Aluminothermie, Ullmanns Encyclopedia of industrial Chemistry, 1972, Vol. 7

Hammerschmidt, J.: Entwicklung einer Prozessroute zur Herstellung von γ–TiAl-Legierungen durch Aluminothermie und Schutzgas-Elektroschlackeumschmelzen, D82 (Diss. RWTH Aachen) Shaker Verlag, ISBN 3-8322-1971-4, Aachen 2003Stoephasius

Stoephasius, J.-C.: Modelling of metallothermic reactions-local reaction rates during aluminothermic γ-TiAl-Production, Erzmetall, World of Metallurgy, Band 58, 2004, Nr. 4

Boldyrev, V. Meyer, K.: Festkörperchemie, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1973

Baláž, P.: Mechanochemistry in Nanoscience and Minerals Engineering, Springer, Berlin Heidelberg, 2008.

Gock, E., Kurrer, K.:Eccentric vibratory mills – theory and practice, Powder Technology 105, 1999

Varma, A., Lebrat, J.: Combustion synthesis of advanced materials, Chemical Engineering Science Vol. 27, 1992, No.9-11

Wang, L., Munir, Z.: Review, Thermite reactions: their utilization in the synthesis and processing of materials, Journal of Materials Science, Vol.28, 1993

Articles - archived