Thermal transport properties and microstructure of the solid Bi-Cu alloys

Authors

DOI:

https://doi.org/10.30544/841

Keywords:

Bi–Cu system, microstructure, DSC, thermal conductivity

Abstract

Thermal transport properties of solid Bi-Cu alloys have been investigated over a wide composition range and temperature range between 25 and 250 °C. The flash method was used to determine thermal diffusivity. Thermal diffusivity was discovered to decrease continuously with increasing temperature and bismuth content. The indirect Archimedean method was used to determine the density of the Bi-Cu alloys at 25 °C. The obtained results show that the density of the studied alloys decreases slightly as the copper content increases. Thermal conductivity of the alloys was calculated using measured diffusivity, density, and a calculated specific heat capacity. The thermal conductivity of the studied Bi-Cu alloys decreases with increasing temperature and bismuth content, similar to thermal diffusivity. SEM with energy dispersive X-ray spectrometry (EDS) and differential scanning calorimetry (DSC) were used to examine the microstructure and melting behavior of Bi-Cu alloys, respectively. The eutectic temperature was measured to be 269.9±0.1 °C, and the measured phase transition temperatures and heat effects were compared to the results of CALPHAD thermodynamic calculations.

References

M. Yu, K. Matsugi, Z. Xu, Y. Choi, J. Yu, S. Motozuka, Y. Nishimura, K. I. Suetsugu: Mater Trans, 59 (2018) 303-310.

Crossreff

H. Lee, K.-S. Choi, Y.-S. Eom, H.-C. Bae, J. H. Lee: ETRI J, 38 (2016) 1163-1171.

Crossreff

Y. Goh, A.S.M.A. Haseeb, M.F.M. Sabri: Electrochim Acta, 90 (2013) 265-273.

Crossreff

J. E. Spinelli, B. L. Silva, A. Garcia: Mater Des, 58 (2014) 482-490.

Crossreff

J. M. Song, H. Y. Chuang, T.X. Wen: Metall Mater Trans A, 38 (2007) 1371-1375.

Crossreff

ASM International Handbook Committee: Properties and selection: nonferrous alloys and special-purpose materials, 2, ASM international, Materials Park, OH, 1990.

S. P. Singh, B. K. D. Barman, P. Kumar: Mater Sci Eng A, 677 (2016) 140-152.

Crossreff

J. Pstruś, P. Fima: Metall Mater Trans A, 53 (2022) 1-15.

Crossreff

O. Teppo, J. Niemela, P. Taskinen: Report TKK‐V‐B50, Helsinki University of Technology, Finland, 1989.

L. S. Chang, B. B. Straumal, E. Rabkin, W. Gust, F. Sommer: J Phase Equilib, 18 (1997) 128-135.

Crossreff

M. Gomez, L. M. Garin, H. Ebert, P. Bedon, P. Desre: Z Met kd, 67 (1976) 131-134.

Crossreff

R. Burdzik, B. Oleksiak, J. Wieczorek, J. Łabaj, A. Blacha-Grzechnik: Arch Metall Mater, 59 (2014) 281-285.

Crossreff

W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott: J Appl Phys, 32 (1961) 1679-1684.

Crossreff

D. Manasijević, L. Balanović, I. Marković, M. Gorgievski, U. Stamenković, K. Božinović: Thermochim Acta, 702 (2021) 178978. 2021.

Crossreff

D. Manasijević, L. Balanović, I. Marković, M. Gorgievski, U. Stamenković, A. Đorđević, D. Minić, V. Ćosović: Solid State Sci, 119 (2021) 106685.

Crossreff

D. Manasijević, L. Balanović, I. Marković, D. Minić, M. Premović, A. Đorđević, M. Gorgievski, U. Stamenković: J Therm Anal Calorim, 147 (2022) 1965-1972.

Crossreff

D. Manasijević, L. Balanović, V. Ćosović, D. Minić, M. Premović, M. Gorgievski, U. Stamenković, N. Talijan: Metall Mater Eng, 25(4) (2019) 325-334.

Crossreff

W. J. Boettinger, U. R. Kattner, K. W. Moon, J. H. Perepezko: Methods for Phase Diagram Determination, First edition, Elsevier, Kindlington, Oxford, 151-221.

A. Kroupa, A. T. Dinsdale, A. Watson, J. Vrestal, J. Vízdal, A. Zemanová: JOM, 59 (2007) 20-25.

Crossreff

H. L. Lukas, S. G. Fries, B. Sundman: Computational Thermodynamics: the Calphad Method, First edition, Cambridge University Press, Cambridge, 2007.

Crossreff

L. Huang, S. Liu, Y. Du, C. Zhang: Calphad, 62 (2018) 99-108.

Crossreff

Downloads

Published

2022-09-30

How to Cite

Manasijević, Dragan, Ljubiša Balanović, Ivana Marković, Vladan Ćosović, Milan Gorgievski, Uroš Stamenković, and Kristina Božinović. 2022. “Thermal Transport Properties and Microstructure of the Solid Bi-Cu Alloys”. Metallurgical and Materials Engineering 28 (3):503-14. https://doi.org/10.30544/841.

Issue

Section

Research