Deformation behavior and processing map of ATI 425 with initial lamellar microstructure
DOI:
https://doi.org/10.30544/832Keywords:
ATI425 alloy; lamellar microstructure; dynamic recrystallization; bending and fragmentation; processing map.Abstract
The effect of hot compression temperatures and strain rates on deformation behavior and resultant microstructure of ATI 425 alloy with initial lamellar microstructure was investigated in this study. The temperature and strain rate of the hot compression test were chosen to be in the 700-1100 °C and 0.001-1 s-1 ranges, respectively. The stress-strain curve and microstructure evaluation show that the alloy's flow softening is associated with globularization and dynamic recrystallization mechanisms. The constitutive equation calculates the activation energy for the α/β and β regions to be 348 kJ/mol and 201 kJ/mol, respectively. Dynamic recovery and partial recrystallization are the dominant structure modification mechanisms in the beta single-phase region. Bending and fragmentation of alpha plates is the dominant mechanism of microstructure promotion in the α/β region at low temperatures and low strain rates, less than 0.1s-1. Local shear and alpha plate break-up are the main factors in structural modification at high strain rates, greater than 0.1s-1. The extracted process map at 0.5 strain revealed three zones: instability, safe zone, and peak zone, with power dissipation efficiencies of 0 -0.25%, 30-40%, and above 40%.
References
D. Bryan: Mater. Sci. Forum, 786 (2014) 543-548.
M. Xiong, W. Zeng, F.Tian, Y. Zhou: Mater. Sci. Eng. A, 548 (2012) 6-11.
H. Margolin, P. Cohen, 1st edition, Springer, New York, 1980, 2991-2997.
T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K. Prasad: Mater. Sci. Eng. A, 325 (2002) 112-125.
S. L. Semiatin, V. Seetharaman and I. Weiss: Mater. Sci. Eng. A, 263 (1999) 257-271.
I. Weiss, G.E. Welsch, F.H. Froes, D. Eylon, in: G. Luetjering, U. Zwicker, W. Bunk (Eds.), Titanium: science and technology (1985) 1503-1510.
C. H. Park, K. T. Park, D. H. Shin and C. S. Lee: Mater Trans, 49 (2008) 2196-2200
R.N. Wang, Z.P. Xi, Y.Q. Zhao, Y.L. Qi: Rare Metall Mater Eng, 37 (2008) 1356-1359.
Y.F. Han, W. D. Zeng, Y.L. Qi, Y. Q. Zhao: Mater. Sci. Eng. A, 528 (2011) 8410-8416.
Z. C. Sun, H. Yang, Z.Tang: Comput Mater Sci, 50 (2010) 308-318.
R. Ding, Z. X. Guo, A.Wilson: Mater. Sci. Eng. A, 327 (2002) 233-245.
P.Wanjara, M. Jahazi, H. Monajat, S. Yue: Mater Sci Eng. A, 416 (2006) 300-311.
Y. Gong: Applied Mechanics and Mater, 274 (2013) 427-431.
P. M. Souza, H. Beladi, R.Singhc, B. Rolfe, P. D. Hodgson: Mater. Sci. Eng. A, 648 (2015) 265-273.
Q. Chao, P. D. Hodgson, and H. Beladi: Metall. and Mater.Trans. A, 45 (2004) 2659-2671.
X. Yang, H. Guo, Z. Yao and S. Yuan: High Temp. Mater. Process 2017.
D. Yuan, L. Ping, X. Ke-min, Z. Qing, W. Xiao-xi: Trans. Nonferrous Metall. Soc. China, 17 (2007) 1199-1204.
P. Wanjara, M. Jahazia, H. Monajatib, S. Yueb, J. P. Immarigeon: Mater. Sci. Eng. A, 396 (2005) 50-60.
I. Philippart, H.J. Rack, Mat.Sci. Eng. A, 243 (1998) 196-200.
Hailin Xu, Hongbo Dong and Yong Wang: Applied Mechanics and Mater, 447 (2014) 117-121.
J. Jonas, C. Sellars, and W. M. Tegart: Metall. Reviews, 14 (1969)1-24.
C. Roucoules, P. D. Hodgson, S. Yue, and J. J. Jonas: Metall. and Mater.Trans. A, 25 (1992) 389-400.
B. Liu, Y. P. Li, H. Matsumoto, Y. B. Liu, Y. Liu, and A. Chiba: Mater. Sci. Eng A, 528 (2011) 2345-2352.
H. C. Braga, R. Barbosa, and J. Breme: Scripta Met. et Materialia, 28 (1993) 979-983.
L. Briottet, J. J. Jonas, and F. Montheillet: Acta Met, 44 (1996) 1665-1672.
F. Pilehva, A. Zarei-Hanzaki, M. Ghambari, and H. R. Abedi: Mat. & Design, 51 (2013) 457-465.
Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.S. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker: Metall. Trans. A, 15 (1984) 1883-1892.
D. Zhou, W. Zeng, J. Xu, W. Chen, S. Wang: Advanced Eng. Mater, 23 (2019) 181-193.
Q. Yadong, M. Wang, L. Lei, H. Xu, L. Wang, J. Qin, W. Lu , D. Zhang: Mater. Sci. Eng. A, 555 (2012) 99-105.
T.R. Bieler and S.L. Semiatin: Int. J. Plasticity, 18 (2002) 1165-1189.
M. Motyka, J. Sieniawski, W. Ziaja, M. Mroczka, M. B.ski: Int. Journal of Mater. Research, 5 (2018) 57-63.
W. Cheng-bao, Y. He, F. Xiao-guang, S. Zhi-chao: Trans. Nonferrous Met. Soc. China, 21 (2011) 1963-1969.
H. Margolin and P. Cohen: in Titanium '80: Science and Technology, H. Kimura and O. Izumi, eds., TMS, Warrendale, PA, 1980, 1555-61.
S.L. Semiatin: Metall. Mater. Trans. A, 29 (2020) 17-29.
R. Ding, Z. X. Guo, A. Wilson: Mater. Sci. Eng. A, 327 (2) 2002 233-45.
P. Vo, "Flow and microstructure development of a near-alpha titanium alloy during thermomechanical processing," Phd thesis, Materials Science, 2009.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Rashid Mahdavi, E. Emadoddin, S. M. Abbasi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their published articles online (e.g., in institutional repositories or on their website, social networks like ResearchGate or Academia), as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.