Compressive behavior of perlite/sodium silicate composite foam modified by boric acid

Authors

  • Pranto Karua Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
  • Md Arifuzzaman Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh

DOI:

https://doi.org/10.30544/755

Keywords:

Lightweight Perlite Composite, Sodium Silicate Solution, Boric Acid, Compressive Properties, Strain Rate Sensitivity, Hygroscopic Test

Abstract

In this work lightweight expanded perlite/sodium silicate composite foams were manufactured with varying quantities of boric acid (BA) 0-2.88 wt.%. The composites were characterized for density, compressive strength (CS), compressive modulus (CM), and energy absorption (EA) up to 50% strain. The compression tests were also conducted at various crosshead speeds to evaluate the strain rate dependency of the foams. The hygroscopic tests were done to evaluate water absorption properties and investigate the effects of water absorption on the compressive properties of the foams. The CS, CM, and EA of the foams increased for a boric acid content of 0.74 wt.%, but further addition of BA caused a gradual decrease in these characteristics. The range of sp. CS (3.80-5.93 MPa/(g/cm3)) achieved were found to be well compatible with the values of building materials in the literature. The foams appeared to be sensitive to the strain rate in compression, causing variations in the compressive properties as well as the trends of stress-strain curves. Furthermore, the addition of BA in the composite reduced water absorption up to a BA content of 1.46 wt.%. The compressive properties were also highly influenced by the hygrometric test.

References

A.M. Rashad: Constr Build Mater, 121 (2016) 338-353.

Crossreff

O.A. Qasim: Int J Civ Eng, 9 (2018) 371-387.

J. Y. Xue Zhang: Appl Mech Mater, 584 (2014) 1835-1838.

Crossreff

O. Sengul, et al.: Energy Build, 43 (2011) 671-676.

Crossreff

P. Pramusanto, et al.: IOP Conf. Ser.: Mater Sci Eng, 830 (2020) 042040.

Crossreff

S. Celik, R. Family, M.P. Menguc: J Build Eng, 6 (2016) 105-111.

Crossreff

R. Ye, et al.: Materials, 8 (2015) 7702-7713.

Crossreff

T.S. Bozkurt, S.Y. Demirkale: Acoust Aust, 48 (2020) 375-393.

Crossreff

X. Yanjun, et al.: Open Mater Sci, 9 (2015) 39-42.

Crossreff

C. Yao, et al.: Energy Convers Manag, 155 (2018) 20-31.

Crossreff

D. Sun, L. Wang: Constr Build Mater, 101 (2015) 791-796.

Crossreff

G. Jia, et al.: J. Non-Cryst Solids, 482 (2018) 192-202.

Crossreff

X.W. Wu, et al.: Environ Prog Sustain Energy, 37 (2018) 1319-1326.

Crossreff

L. Fu, t al.: Renew Energy, 114 (2017) 733-743.

Crossreff

Alam, M., et al.: Energy Build, 69 (2014) 442-450.

Crossreff

H. Gao, et al.: Energy Build, 200 (2019) 21-30.

Crossreff

Y. Lin, X. Li, Q. Huang: Energy Build, 231 (2021) 110637.

Crossreff

B. Skubic, M. Lakner, I. Plazl: Ind Eng Chem Res, 52 (2013) 10244-10249.

Crossreff

M. Arifuzzaman, H.S. Kim: Constr Build Mater, 93 (2015) 230-240.

Crossreff

P. Adhikary, M. Arifuzzaman, E. Kabir: J Eng Adv, 1 (2020) 1-5.

Crossreff

Y.L. Tian, et al.: Appl Mech Mater, 405-408 (2013) 2771-2777.

Crossreff

Ü. Ağbulut: J Therm Eng, 4 (2018) 2274-2286.

Crossreff

H. Gao, et al.: Energy Build, 190 (2019) 25-33.

Crossreff

J. Zhang, et al.: Energy Build, 92 (2015) 155-160.

Crossreff

Y. Li, et al.: J Alloys Compd, 666 (2016) 513-519.

Crossreff

D. Shastri, H.S. Kim: Constr Build Mater, 60 (2014) 1-7.

Crossreff

A. Çolak: Cem Concr Compos, 22 (2000) 193-200.

Crossreff

A. Vimmrová, et al.: Cem Concr Compos, 33 (2011) 84-89.

Crossreff

H. Allameh-Haery, E. Kisi, T. Fiedler: J Cell Plast, 53 (2016) 425-442.

Crossreff

A. Daoud: Mater Sci Eng A, 525 (2009) 7-17.

Crossreff

R. Bouix, P. Viot, J.-L. Lataillade: Int J Impact Eng, 36 (2009) 329-342.

Crossreff

M.D. Goel, et al.: Materials Science and Engineering: A, 590 (2014) 406-415.

Crossreff

E. Woldesenbet, N. Gupta, A. Jadhav: J Mater Sci, 40 (2005) 4009-4017.

Crossreff

D.P. Mondal, M.D. Goel, S. Das: Mater Des, 30 (2009) 1268-1274.

Crossreff

Y.A. Owusu: Adv Colloid Interface Sci, 18 (1982) 57-91.

Crossreff

A. Bicer, F. Kar: Therm Sci Eng Prog, 1 (2017) 59-65.

Crossreff

Downloads

Published

2022-03-31

How to Cite

Karua, Pranto, and Md Arifuzzaman. 2022. “Compressive Behavior of perlite/Sodium Silicate Composite Foam Modified by Boric Acid”. Metallurgical and Materials Engineering 28 (1):103-24. https://doi.org/10.30544/755.

Issue

Section

Composite materials - novelties in manufacturing and application