Numerical investigation of the nanoparticles nature effect on the MHD behavior in a square cavity with a metallic obstacle
DOI:
https://doi.org/10.30544/725Keywords:
Nanoparticles, thermo-magnetohydrodynamic, Al2O3, CuO, Fe3O4, finite element methodAbstract
In this paper, a study is conducted to determine numerically the effect of the nanoparticles nature (Al2O3, CuO, and Fe3O4) on the thermo-magnetohydrodynamic behavior of a nanofluid in a square cavity with a circular obstacle. The left wall of this cavity is movable and provided with a cold temperature (Tc) and the right wall is exposed to a hot temperature (Th). However, the upper and lower walls are considered adiabatic. The purpose of this paper is to highlight the effect of aluminum dioxide, copper oxide, and iron trioxide nanoparticles on the thermal and hydrodynamic behavior under the influence of different volume fractions(0 ≤ φ ≤ 0.1), different Hartmann numbers (0 ≤ Ha ≤ 75) and Richardson number (0 ≤ Ri ≤5). The system of governing équations was solved by the finite element method adopting the Galerkine discretization. The obtained results showed that the CuO nanoparticles improve the heat transfer at the fluid and obstacle, in addition, the increase of Hartmann number reduces the heat capacity, especially with the use of Fe3O4 nanoparticles. This study falls within the context of improving the cooling rate of industrial equipment.
References
M.M. Rahman, M.A. Alim, M.M.A. Sarker: International Communications in Heat and Mass Transfer, 37 (2010) 524-534.
A. H. Mahmoudi, I. Pop, M. Shahi, F. Talebi: Computers & Fluids, 72 (2013) 46-62.
G.C. Bourantas, V.C. Loukopoulos: International Journal of Heat and Mass Transfer, 79 (2014) 930-944.
A. Mahmoudi, I. Mejri, M.A. Abbassi, A. Omri:Powder Technology, 256 (2014) 257-271.
O. Ghaffarpasand: Applied Mathematical Modelling, 40 (2016) 9165-9182.
R. Yousofvand, S. Derakhshan, K. Ghasemi, M. Siavashi: International Journal of Mechanical Sciences, 133 (2017) 73-90.
M. Aghamajidi, M.E.Yazdi, S. Dinarvand, I. Pop: Propulsion and Power Research, 7 (2018) 78-90.
S.E. Ahmed, Z.Z. Rashedc: Case Studies in Thermal Engineering, 14 (2019) 100430.
M.P. Mkhatshwa, S.S. Motsa, M.S. Ayano, P. Sibanda: Case Studies in Thermal Engineering, 18 (2020) 100598.
K. Ghasemi, M. Siavashi: International Journal of Mechanical Sciences, 165 (2020) 105199.
B. Mliki, M.A. Abbassi:Propulsion and Power Research, 10 (2021) 143-154.
F. Bouzit, H. Laidoudi, M. Bouzit.: Defect and Diffusion Forum, 378 (2018)113-124.
B. Mahanthesh, N.S. Shashikumar, B.J. Gireesha, I.L. Animasaun: Journal of Computational Design and Engineering, 6 (2019) 551-561.
B. Mahanthesh, B. J. Gireesha, S.A. Shehzad, N. Ibrar, K. Thriveni: Heat Transfer (2020) 1-17.
I.L. Animasaun, O.K.Koriko, K.S. Adegbie, H.A. Babatunde, R.O. Ibraheem, N. Sandeep, B. Mahanthesh: Journal of Thermal Analysis and Calorimetry, 135 (2019) 873-886.
B.J. Gireesha, B. Mahanthesh, R.S.R. Gorla, P.T. Manjunatha: Heat Mass Transfer, 52(2016) 897-911.
B. Mahanthesh: Mapana Journal of Sciences, 16 (2017) 13-26.
B.J. Gireesha, B. Mahanthesh, K.L. Krupalakshmi: Results in Physics, 7 (2017) 4340-4348.
F. Bouzit, H. Laidoudi, B.Blissag, M. Bouzit, A. Ghenaim: Diffusion Foundations Submitted, 16 (2018) 84-95.
J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. II, Oxford University Press, Cambridge, UK, 1873. p. 54.
H.C. Brinkman: J Chem Phys, 20 (1952) 571-581.
S. Hussain, S.E. Ahmedc: Journal of Magnetism and Magnetic Materials, 484 (2019) 356-366.
G.A. Sheikhzadeh, S.Nazari: Transport Phenomena in Nano and Micro Scales, 1 (2013) 138-146.
B. Mliki, M.A.Abbassi, A. Omri, Z. Belkacem: Powder Technology, 308 (2017) 70-83.
A. Mokhefi, M. Bouanini, M. Elmir: International Journal of Heat and Technology, 39 ( 2021) 251-261.
G.C. Bourantas, V.C. Loukopoulos: International Journal of Heat and Mass Transfer, 79 (2014) 930-944.
A.Mokhefi, M.Bouanini, M.Elmir, P.Spitéri: Metallurgical and Materials Engineering, 27 (2021) 301-320.
I. Mejri , A. Mahmoud , M.A. Abbasi , A. Omri: Powder Technol, 266 (2014) 340-353 .
K.M. Rabbi, M. Sheikholeslami, A. Karim, A. Shafee, Z. Li, I. Tlili: Physica A, 541 (2020) 123520.
K.R. Cramer, S.I. Pai: Magnetofluid Dynamics for Engineering and Applied Physicists McGraw-Hill, New York, 1974.
A. Mahmoudi: Chinese Journal of Physics, 68 (2020) 618-632.
A.W. Ali , V. Dumitru , F. Constantin: Physics of Fluid, 29 (2017) 082001.
K. Madhura , R. Babitha , S.S.Iyengar: Journal of Nanofluids, 8 (2019) 1158-1169.
M. Narahari , N. Alaparthi , I. Pop: The Canadian Journal of Chemical Engineering, 95 (2017) 1-13.
G. Kalpana , K.R. Madhura , S.S. Iyengar , M.S. Uma: International Journal of Applied and Computational Mathematics, 5 (2019) 5:62.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Fayçal Bouzit, Mohamed Bouzit, Abderrahim Mokhefi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their published articles online (e.g., in institutional repositories or on their website, social networks like ResearchGate or Academia), as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.