Density functional prediction of the structural, elastic, electronic, and thermodynamic properties of the cubic and hexagonal (c, h)-Fe2Hf

  • M Hemici Dosage Analysis and Characterization Laboratory (DAC), University Farhet Abbas of Setif 1, 19000, Algeria
  • T Chihi Research Unit on Emerging Materials (RUEM), University Farhet Abbas of Setif 1, 19000, Algeria
  • M A Ghebouli Research Unit on Emerging Materials (RUEM), University Farhet Abbas of Setif 1, 19000, Algeria
  • FATMI Messaoud Research Unit on Emerging Materials (RUEM), University Farhet Abbas of Setif 1, 19000, Algeria
  • B Ghebouli Laboratory of Studies Surfaces and Interfaces of Solids Materials, Department of Physics, Faculty of Sciences, University Ferhat Abbas of Setif 1, 19000, Algeria
  • S I Ahmad Department of Physics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
Keywords: elastic stability; thermodynamic properties; Fe2Hf compound

Abstract

Using density functional theory (DFT), the structural, elastic, electronic, and thermodynamic properties of Fe2Hf in the cubic and hexagonal solid phases with Fd-3m and P63/mmc are reported with generalized gradient approximations (GGA). To achieve energy convergence, we report the k-point mesh density and plane-wave energy cut-offs. The calculated equilibrium parameters are in good agreement with the available theoretical data. A complete elastic tensor and crystal anisotropies of the ultra-incompressible Fe2Hf are determined in the wide pressure range. Finally, by using the quasi-harmonic Debye Model, the isothermal and adiabatic bulk modulus and heat capacity of Fe2Hf are also successfully obtained in the present work. By the elastic stability criteria, it is predicted that Fd-3m and P63/mmc structures of Fe2Hf are stable in the pressure range studied, respectively.

References

Koki Ikeda: ferromagnetism in hexagonal and cubic Fe2Hf compound (1977) 100-101.

https://doi.org/10.1515/ijmr-1977-680305

S. Kobayashi, K. Kimura, K. Tsuzaki: Intermetallics, 46 (2014) 80-84.

https://doi.org/10.1016/j.intermet.2013.10.017

S. Kobayashi, T. Hibaru: ISIJ International, 55 (2015) 293-399.

https://doi.org/10.2355/isijinternational.55.293

J. Belosevic-Cavor, V. Koteski, N. Novakovic, G. Concas, F. Congiu, and G. Spano: Euro Phys J B, 50 (2006) 425-430.

https://doi.org/10.1140/epjb/e2006-00160-7

M. Takeyama: Materials Science Forum, 3012 (2007) 539-543.

https://doi.org/10.4028/www.scientific.net/MSF.539-543.3012

D. Sholl, J.A. Steckel, Density functional theory: a practical introduction, John Wiley & Sons (2011) 17-25.

K.P. Skokov, O. Gutfleisch: Scripta Materialia, 154 (2018) 289-294.

https://doi.org/10.1016/j.scriptamat.2018.01.032

W. Kohn, L.J. Sham: Physical review, 140 (1965) 1133-1138.

https://doi.org/10.1103/PhysRev.140.A1133

J.P. Perdew, K. Burke, M. Ernzerhof: Phy rev letters, 77 (1996) 3865-3871.

https://doi.org/10.1103/PhysRevLett.77.3865

O.Y. Vekilova, B. Fayyazi, K.P. Skokov, O. Gutfleisch, C. Echevarria-Bonet, J.M. Barandiaron, A. Kovacs, J. Fischbacher, T. Schrefl, O. Eriksson: Phy Rev B, 99 (2019) 024421-024429.

https://doi.org/10.1103/PhysRevB.99.024421

G. Kresse, D. Joubert: Phy Rev B, 59 (1999) 1758-1763.

https://doi.org/10.1103/PhysRevB.59.1758

D.J. Chadi, M.L. Cohen: Phy Rev B, 8 (1973) 5747-5754.

https://doi.org/10.1103/PhysRevB.8.5747

D. Goll, T. Gross, R. Loeffler, U. Pflanz, T. Vogel, A. Kopp, T Grubesa, G. Schneider Hard: Phy Sta Solidi RRL, 11 (2017) 1700184 (1-4).

https://doi.org/10.1002/pssr.201700184

A.D. Boese, J.M. Martin, N.C. Handy: J of Chem Phys, 119 (2003) 3005-3014.

https://doi.org/10.1063/1.1589004

A. Tanto, T. Chihi, M.A. Ghebouli, M. Reffas, M. Fatmi, B. Ghebouli: Resu in Phy 9 (2018) 763-770.

https://doi.org/10.1016/j.rinp.2018.03.021

F. Weber, L. Pintschovius, W. Reichardt, R. Heid, K.-P.Bohnen, A. Kreyssig, D. eznik, K. Hradil: Phy Rev B, 89 (2014) 10450) 1-13).

https://doi.org/10.1103/PhysRevB.89.104503

M. D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Haspin, S.J. Clark, M.C. Payne: J of Phys Cond Matter, 14 (2002) 2717-2744.

https://doi.org/10.1088/0953-8984/14/11/301

J.P. Perdew, S. Burke, M. Ernzerhof: Phys Rev Letters, 80(4) (1998) 891-891.

https://doi.org/10.1103/PhysRevLett.80.891

L. Fast, J M. Wills, B. Johansson and O. Eriksson: Phys Rev B, 51 (1995) 17431-17438.

https://doi.org/10.1103/PhysRevB.51.17431

M. Born, K. Huang: Dynamical Theory of Crystal Lattices, Clarendon, Oxford, (1956) 120-124.

Q.K. Hu, Q.H. Wu, Y.M. Ma, L.J. Zhang, Z.Y. Liu, J.L. He, H. Sun, H.T. Wang, Y.J. Tian: Phys Rev B, 73 (2006) 214116 (1-5).

https://doi.org/10.1103/PhysRevB.73.214116

P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills and O. Eriksson: J of Appl Phys, 84 (1998) 4891-4904.

https://doi.org/10.1063/1.368733

C.F. Cline, H.L. Dunegan, G.W. Henderson: J of Appl Phys, 38 (1967) 1944-1948.

https://doi.org/10.1063/1.1709787

J. M. Leger, J. Haines, M. Schmidt, J.P. Petitet, A.S. Periera, J.A.H. Da Jornada: Nature, 383 (1996) 401.

https://doi.org/10.1038/383401a0

S.F. Pugh: Philos Mag, 45 (1954) 823-843.

https://doi.org/10.1080/14786440808520496

J. Haines, J.M. leger, G. Bocquillon: Ann Rev of Mater Res, 31 (2001) 1-23.

https://doi.org/10.1146/annurev.matsci.31.1.1

O.L. Anderson: J Phys Chem of Sol, 24 (7) (1963) 909-917.

https://doi.org/10.1016/0022-3697(63)90067-2

R. Hill: Proc. Soc. London A, 65 (1952) 350.

https://doi.org/10.1088/0370-1298/65/5/307

K. B. Panda and K. S. Ravi: Comput Mater Sci, 35 (2006) 134-150.

https://doi.org/10.1016/j.commatsci.2005.03.012

C. Kittel: Introduction to Solid State Physics, 7th ed. Wiley, New York (1996) 15-21.

Published
2021-11-06
Section
Modeling and simulation in metallurgical and materials engineering