Density functional prediction of the structural, elastic, electronic, and thermodynamic properties of the cubic and hexagonal (c, h)-Fe2Hf
DOI:
https://doi.org/10.30544/627Keywords:
elastic stability; thermodynamic properties; Fe2Hf compoundAbstract
The structural, elastic, electrical, and thermodynamic characteristics of Fe2Hf cubic and hexagonal phases with space group Fd-3m and P63/mmc are presented using the generalized gradient approximations. The k-points mesh density and plane-wave energy cut-off accomplish the energy convergence. The computed equilibrium parameters are closer to the theoretical data. The elastic tensor and crystal anisotropy of ultra-incompressible Fe2Hf are computed in a wide pressure range. The isothermal and adiabatic bulk modulus, as well as the heat capacity of Fe2Hf is successfully calculated utilizing the quasi-harmonic Debye Model. The Fd-3m and P63/mmc Fe2Hf structures are stable in the studied pressure range.
References
Koki Ikeda: Inter J Mater Research, 68 (1977) 195-198.
https://doi.org/10.1515/ijmr-1977-680305
S. Kobayashi, K. Kimura, K. Tsuzaki: Intermetallics, 46 (2014) 80-84.
https://doi.org/10.1016/j.intermet.2013.10.017
S. Kobayashi, T. Hibaru: ISIJ International, 55 (2015) 293-399.
https://doi.org/10.2355/isijinternational.55.293
J. Belosevic-Cavor, V. Koteski, N. Novakovic, G. Concas, F. Congiu, and G. Spano: Euro Phys J B, 50 (2006) 425-430.
https://doi.org/10.1140/epjb/e2006-00160-7
M. Takeyama: Materials Science Forum, 3012 (2007) 539-543.
https://doi.org/10.4028/www.scientific.net/MSF.539-543.3012
D. Sholl, J.A. Steckel, Density functional theory: a practical introduction, John Wiley & Sons (2011) 17-25.
K.P. Skokov, O. Gutfleisch: Scripta Materialia, 154 (2018) 289-294.
https://doi.org/10.1016/j.scriptamat.2018.01.032
W. Kohn, L.J. Sham: Physical review, 140 (1965) 1133-1138.
https://doi.org/10.1103/PhysRev.140.A1133
J.P. Perdew, K. Burke, M. Ernzerhof: Phy rev letters, 77 (1996) 3865-3871.
https://doi.org/10.1103/PhysRevLett.77.3865
O.Y. Vekilova, B. Fayyazi, K.P. Skokov, O. Gutfleisch, C. Echevarria-Bonet, J.M. Barandiaron, A. Kovacs, J. Fischbacher, T. Schrefl, O. Eriksson: Phy Rev B, 99 (2019) 024421-024429.
https://doi.org/10.1103/PhysRevB.99.024421
G. Kresse, D. Joubert: Phy Rev B, 59 (1999) 1758-1763.
https://doi.org/10.1103/PhysRevB.59.1758
D.J. Chadi, M.L. Cohen: Phy Rev B, 8 (1973) 5747-5754.
https://doi.org/10.1103/PhysRevB.8.5747
D. Goll, T. Gross, R. Loeffler, U. Pflanz, T. Vogel, A. Kopp, T Grubesa, G. Schneider Hard: Phy Sta Solidi RRL, 11 (2017) 1700184 (1-4).
https://doi.org/10.1002/pssr.201700184
A.D. Boese, J.M. Martin, N.C. Handy: J of Chem Phys, 119 (2003) 3005-3014.
https://doi.org/10.1063/1.1589004
A. Tanto, T. Chihi, M.A. Ghebouli, M. Reffas, M. Fatmi, B. Ghebouli: Resu in Phy 9 (2018) 763-770.
https://doi.org/10.1016/j.rinp.2018.03.021
F. Weber, L. Pintschovius, W. Reichardt, R. Heid, K.-P.Bohnen, A. Kreyssig, D. eznik, K. Hradil: Phy Rev B, 89 (2014) 10450) 1-13).
https://doi.org/10.1103/PhysRevB.89.104503
M. D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Haspin, S.J. Clark, M.C. Payne: J of Phys Cond Matter, 14 (2002) 2717-2744.
https://doi.org/10.1088/0953-8984/14/11/301
J.P. Perdew, S. Burke, M. Ernzerhof: Phys Rev Letters, 80(4) (1998) 891-891.
https://doi.org/10.1103/PhysRevLett.80.891
L. Fast, J M. Wills, B. Johansson and O. Eriksson: Phys Rev B, 51 (1995) 17431-17438.
https://doi.org/10.1103/PhysRevB.51.17431
M. Born, K. Huang: Dynamical Theory of Crystal Lattices, Clarendon, Oxford, (1956) 120-124.
Q.K. Hu, Q.H. Wu, Y.M. Ma, L.J. Zhang, Z.Y. Liu, J.L. He, H. Sun, H.T. Wang, Y.J. Tian: Phys Rev B, 73 (2006) 214116 (1-5).
https://doi.org/10.1103/PhysRevB.73.214116
P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills and O. Eriksson: J of Appl Phys, 84 (1998) 4891-4904.
https://doi.org/10.1063/1.368733
C.F. Cline, H.L. Dunegan, G.W. Henderson: J of Appl Phys, 38 (1967) 1944-1948.
https://doi.org/10.1063/1.1709787
J. M. Leger, J. Haines, M. Schmidt, J.P. Petitet, A.S. Periera, J.A.H. Da Jornada: Nature, 383 (1996) 401.
https://doi.org/10.1038/383401a0
S.F. Pugh: Philos Mag, 45 (1954) 823-843.
https://doi.org/10.1080/14786440808520496
J. Haines, J.M. leger, G. Bocquillon: Ann Rev of Mater Res, 31 (2001) 1-23.
https://doi.org/10.1146/annurev.matsci.31.1.1
O.L. Anderson: J Phys Chem of Sol, 24 (7) (1963) 909-917.
https://doi.org/10.1016/0022-3697(63)90067-2
R. Hill: Proc. Soc. London A, 65 (1952) 350.
https://doi.org/10.1088/0370-1298/65/5/307
K. B. Panda and K. S. Ravi: Comput Mater Sci, 35 (2006) 134-150.
https://doi.org/10.1016/j.commatsci.2005.03.012
C. Kittel: Introduction to Solid State Physics, 7th ed. Wiley, New York (1996) 15-21.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 M Hemici, T Chihi, M A Ghebouli, FATMI Messaoud, B Ghebouli, S I Ahmad

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their published articles online (e.g., in institutional repositories or on their website, social networks like ResearchGate or Academia), as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.