Density functional prediction of the structural, elastic, electronic, and thermodynamic properties of the cubic and hexagonal (c, h)-Fe2Hf

Authors

  • M Hemici Dosage Analysis and Characterization Laboratory (DAC), University Farhet Abbas of Setif 1, 19000, Algeria
  • T Chihi Research Unit on Emerging Materials (RUEM), University Farhet Abbas of Setif 1, 19000, Algeria
  • M A Ghebouli Research Unit on Emerging Materials (RUEM), University Farhet Abbas of Setif 1, 19000, Algeria
  • FATMI Messaoud Research Unit on Emerging Materials (RUEM), University Farhet Abbas of Setif 1, 19000, Algeria
  • B Ghebouli Laboratory of Studies Surfaces and Interfaces of Solids Materials, Department of Physics, Faculty of Sciences, University Ferhat Abbas of Setif 1, 19000, Algeria
  • S I Ahmad Department of Physics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

DOI:

https://doi.org/10.30544/627

Keywords:

elastic stability; thermodynamic properties; Fe2Hf compound

Abstract

The structural, elastic, electrical, and thermodynamic characteristics of Fe2Hf cubic and hexagonal phases with space group Fd-3m and P63/mmc are presented using the generalized gradient approximations. The k-points mesh density and plane-wave energy cut-off accomplish the energy convergence. The computed equilibrium parameters are closer to the theoretical data. The elastic tensor and crystal anisotropy of ultra-incompressible Fe2Hf are computed in a wide pressure range. The isothermal and adiabatic bulk modulus, as well as the heat capacity of Fe2Hf is successfully calculated utilizing the quasi-harmonic Debye Model. The Fd-3m and P63/mmc Fe2Hf structures are stable in the studied pressure range.

References

Koki Ikeda: Inter J Mater Research, 68 (1977) 195-198.

https://doi.org/10.1515/ijmr-1977-680305

S. Kobayashi, K. Kimura, K. Tsuzaki: Intermetallics, 46 (2014) 80-84.

https://doi.org/10.1016/j.intermet.2013.10.017

S. Kobayashi, T. Hibaru: ISIJ International, 55 (2015) 293-399.

https://doi.org/10.2355/isijinternational.55.293

J. Belosevic-Cavor, V. Koteski, N. Novakovic, G. Concas, F. Congiu, and G. Spano: Euro Phys J B, 50 (2006) 425-430.

https://doi.org/10.1140/epjb/e2006-00160-7

M. Takeyama: Materials Science Forum, 3012 (2007) 539-543.

https://doi.org/10.4028/www.scientific.net/MSF.539-543.3012

D. Sholl, J.A. Steckel, Density functional theory: a practical introduction, John Wiley & Sons (2011) 17-25.

K.P. Skokov, O. Gutfleisch: Scripta Materialia, 154 (2018) 289-294.

https://doi.org/10.1016/j.scriptamat.2018.01.032

W. Kohn, L.J. Sham: Physical review, 140 (1965) 1133-1138.

https://doi.org/10.1103/PhysRev.140.A1133

J.P. Perdew, K. Burke, M. Ernzerhof: Phy rev letters, 77 (1996) 3865-3871.

https://doi.org/10.1103/PhysRevLett.77.3865

O.Y. Vekilova, B. Fayyazi, K.P. Skokov, O. Gutfleisch, C. Echevarria-Bonet, J.M. Barandiaron, A. Kovacs, J. Fischbacher, T. Schrefl, O. Eriksson: Phy Rev B, 99 (2019) 024421-024429.

https://doi.org/10.1103/PhysRevB.99.024421

G. Kresse, D. Joubert: Phy Rev B, 59 (1999) 1758-1763.

https://doi.org/10.1103/PhysRevB.59.1758

D.J. Chadi, M.L. Cohen: Phy Rev B, 8 (1973) 5747-5754.

https://doi.org/10.1103/PhysRevB.8.5747

D. Goll, T. Gross, R. Loeffler, U. Pflanz, T. Vogel, A. Kopp, T Grubesa, G. Schneider Hard: Phy Sta Solidi RRL, 11 (2017) 1700184 (1-4).

https://doi.org/10.1002/pssr.201700184

A.D. Boese, J.M. Martin, N.C. Handy: J of Chem Phys, 119 (2003) 3005-3014.

https://doi.org/10.1063/1.1589004

A. Tanto, T. Chihi, M.A. Ghebouli, M. Reffas, M. Fatmi, B. Ghebouli: Resu in Phy 9 (2018) 763-770.

https://doi.org/10.1016/j.rinp.2018.03.021

F. Weber, L. Pintschovius, W. Reichardt, R. Heid, K.-P.Bohnen, A. Kreyssig, D. eznik, K. Hradil: Phy Rev B, 89 (2014) 10450) 1-13).

https://doi.org/10.1103/PhysRevB.89.104503

M. D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Haspin, S.J. Clark, M.C. Payne: J of Phys Cond Matter, 14 (2002) 2717-2744.

https://doi.org/10.1088/0953-8984/14/11/301

J.P. Perdew, S. Burke, M. Ernzerhof: Phys Rev Letters, 80(4) (1998) 891-891.

https://doi.org/10.1103/PhysRevLett.80.891

L. Fast, J M. Wills, B. Johansson and O. Eriksson: Phys Rev B, 51 (1995) 17431-17438.

https://doi.org/10.1103/PhysRevB.51.17431

M. Born, K. Huang: Dynamical Theory of Crystal Lattices, Clarendon, Oxford, (1956) 120-124.

Q.K. Hu, Q.H. Wu, Y.M. Ma, L.J. Zhang, Z.Y. Liu, J.L. He, H. Sun, H.T. Wang, Y.J. Tian: Phys Rev B, 73 (2006) 214116 (1-5).

https://doi.org/10.1103/PhysRevB.73.214116

P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills and O. Eriksson: J of Appl Phys, 84 (1998) 4891-4904.

https://doi.org/10.1063/1.368733

C.F. Cline, H.L. Dunegan, G.W. Henderson: J of Appl Phys, 38 (1967) 1944-1948.

https://doi.org/10.1063/1.1709787

J. M. Leger, J. Haines, M. Schmidt, J.P. Petitet, A.S. Periera, J.A.H. Da Jornada: Nature, 383 (1996) 401.

https://doi.org/10.1038/383401a0

S.F. Pugh: Philos Mag, 45 (1954) 823-843.

https://doi.org/10.1080/14786440808520496

J. Haines, J.M. leger, G. Bocquillon: Ann Rev of Mater Res, 31 (2001) 1-23.

https://doi.org/10.1146/annurev.matsci.31.1.1

O.L. Anderson: J Phys Chem of Sol, 24 (7) (1963) 909-917.

https://doi.org/10.1016/0022-3697(63)90067-2

R. Hill: Proc. Soc. London A, 65 (1952) 350.

https://doi.org/10.1088/0370-1298/65/5/307

K. B. Panda and K. S. Ravi: Comput Mater Sci, 35 (2006) 134-150.

https://doi.org/10.1016/j.commatsci.2005.03.012

C. Kittel: Introduction to Solid State Physics, 7th ed. Wiley, New York (1996) 15-21.

Downloads

Published

2021-11-06

How to Cite

Hemici, M, T Chihi, M A Ghebouli, FATMI Messaoud, B Ghebouli, and S I Ahmad. 2021. “Density Functional Prediction of the Structural, Elastic, Electronic, and Thermodynamic Properties of the Cubic and Hexagonal (c, H)-Fe2Hf”. Metallurgical and Materials Engineering 28 (2):171-86. https://doi.org/10.30544/627.

Issue

Section

Modeling and simulation in metallurgical and materials engineering