Corrosion rate and corrosion behaviour analysis of carbon steel pipe at constant condensed fluid


  • Ahmad Royani Research Center for Metallurgy and Materials -“ Indonesian Institute of Sciences, Indonesia
  • Siska Prifiharni Research Center for Metallurgy and Materials -“ Indonesian Institute of Sciences, Indonesia
  • Gadang Priyotomo Research Center for Metallurgy and Materials -“ Indonesian Institute of Sciences, Indonesia
  • Sundjono Sundjono Research Center for Metallurgy and Materials -“ Indonesian Institute of Sciences, Indonesia



condensate, corrosion, immersion steel pipe, weight loss


This study investigates the corrosion rate and corrosion behavior of carbon steel pipe at constant condensed fluid from a geothermal power plant. The corrosion rate of the steel was determined by weight loss analysis, whereas the corrosivity of the condensate fluids was measured by a multimeter Hach HQ40d. The morphology of the corrosion products formed was characterized by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and x-ray diffraction (XRD) analysis. Results showed that the corrosion rate in the liquid part of the condensate fluids is constant during the immersion period when water quality parameters are constant. Meanwhile, the corrosion rate of low carbon steel pipe decreases though with the longer exposure period in the condensate fluid. The decrease of metal corrodibility identical to the lower corrosion rate at a longer exposure time due to the protective corrosion layer formed. The corrosion products during immersion tests identified in the corrosion test were uniform with iron oxide in the form of FeO(OH) and Fe2O3*H2O.


K. Sakaguchi and V. Anbumozhi: Report 2014-14, ERIA Research, Jakarta, 2015.

A. K. Sinha: AKS-Journal, 1 (2010) 1–20.

Y. M. Al Rawahi, F. Shaik, and L. Rao, N: Int. J. Innov. Res. Sci. Technol., 3 (2017) 152–167.

F. D. Owa: Mediterr. J. Soc. Sci., 4 (2013) 65–68.


R. Pierre R: Corrosion Engineering: Principles and Practice, Mc Graw Hill, New York, 2008.


Y. Chen, L. Zhang, H. Qin, L. Xu, and M. Lu: Corrosion, (2011) 13-17.

H. Li, A. Shi, M. Li, and X. Zhang: J. Chem., 1 (2013) 1–12.


E. R. Alley: Water Quality Control Handbook, Second ed., Mc Graw Hill, New York 2007.

A. Royani, S. Prifiharni, G. Priyotomo, and Sundjono: Int. J. Mechatronics Appl. Mech., 2 (2020) 158–164.

W. Zhao, T. Zhang, Y. Wang, J. Qiao, and Z. Wang: Materials (Basel)., 11 (2018) 1–17.


Q. Cui, S. Chandra, and S. McCahan: J. Heat Transfer, 123 (2001) 719–728.


C. Miranda-Herrera, I. Sauceda, J. González-Sánchez, and N. Acuña: Anti-Corrosion Methods Mater., 57 (2010) 167–172.


M. M. Islam, T. Pojtanabuntoeng, and R. Gubner: Corros. Sci., 111 (2016) 139–150.


ASTM International, “Standard Practice for Laboratory Immersion Corrosion Testing of Metals,” in ASTM Special Technical Publication, vol. I, no. Reapproved, ASTM International, 1985, pp. 534–544.

ASTM International: Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test, in ASTM Special Technical Publication, ASTM International, 1999.

A. Royani et al., in IOP Conference Series: Materials Science and Engineering, 541: 2019, 1–10.


M. G. Fontana: Corrosion Engineering, Third ed., Mc Graw Hill, Singapore, 1987.

D. Dwivedi, K. Lepková, and T. Becker: RSC Adv., 7 (2017) 4580–4610.


S. D. Cramer and B. S. Covino: ASM Handbook Vol. 13c: Corrosion: Environments and Industries, ASM, 2006.


A. Šalić and B. Zelić: Phys. Sci. Rev., 3 (2018) 1–10.


J. F. Kreider et al.: Environmental engineering, in The CRC Handbook of Mechanical Engineering, Second Edition, 2005.


Y. Qi, H. Luo, S. Zheng, C. Chen, Z. Lv, and M. Xiong: Int. J. Electrochem. Sci., 9 (2014) 2101–2112.

A. A. Shaymaa and F. M. Hasan: in AIP Conf. Proc. 2213: 2020, 020178–1–020178–6.


R. W. Revie and H. H. Uhlig: Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, Fourth ed., John Wiley & Sons, Inc., Canada, 2008.


J. L. Wang, X. M. Zhan, Y. C. Feng, and Y. Qian: Biomed. Environ. Sci., 18 (2005) 5–8.

N. Sridhar: Corrosion, 57 (2001) 221–235.


S. Wang, D. Liu, N. Du, Q. Zhao, S. Liu, and J. Xiao: Int. J. Electrochem. Sci., 10 (2015) 4393–4404.

A. Royani, S. Prifiharni, G. Priyotomo, J. Triwardono, and Sundjono, in IOP Conference Series: Earth and Environmental Science, 399: 2019, 1-8.


K. V. Rybalka, L. A. Beketaeva, and A. D. Davydov: Russ. J. Electrochem., 54 (2018) 1284–1287.


A. Ismail and N. H. Adan: Am. J. Eng. Res., 3 (2014) 64-67.

K. Fujiwara, K. Yoneda, and F. Inada, “Effect of dissolved oxygen on flow-accelerated corrosion in neutral and alkaline solutions,” EUROCORR 2017 - Annu. Congr. Eur. Fed. Corros. 20th Int. Corros. Congr. Process Saf. Congr. 2017, pp. 1–10, 2017.

U.S. Environmental Protection Agency: Quality criteria for water, Postharvest Biol. Technol., 1996.

A. Sander, B. Berghult, A. Elfström Broo, E. Lind Johansson, and T. Hedberg: Corros. Sci., 38 (1996) 443–455.





How to Cite

Royani, Ahmad, Siska Prifiharni, Gadang Priyotomo, and Sundjono Sundjono. 2021. “Corrosion Rate and Corrosion Behaviour Analysis of Carbon Steel Pipe at Constant Condensed Fluid”. Metallurgical and Materials Engineering 27 (4):519-30.



Steelmaking and processing - devoted to Prof. Ljubomir Nedeljković