Fractographic analysis of the aluminum matrix composite prepared by accumulative roll bonding

  • Ivana Cvijović‐Alagić Center of Excellence „CEXTREME-LAB“, Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
  • Vesna Maksimović Center of Excellence „CEXTREME-LAB“, Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
  • Milan T Jovanović Center of Excellence „CEXTREME-LAB“, Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
Keywords: Aluminum foils, Multilayer composite, ARB, Tensile testing, Fractographic analysis, Electron microscopy

Abstract

Recent research in the material science field is focused on the easy-to-apply and cost-effective production of the structural components with enhanced mechanical properties. As an answer to these new trends in the present study, the inexpensive household aluminum foils are used to produce the multilayer aluminum matrix composite. The aluminum matrix composites are manufactured by hot-rolling of the sandwiched foils and afterward subjected to microstructural characterization and mechanical testing. Analysis of the produced composite microstructure and fracture surface obtained after tensile testing was performed using the scanning electron microscopy (SEM). The qualitative fractographic analysis revealed that the ductile fracture features prevail in the overall fracture mode of the investigated multilayer composite, while the quantitative fractographic investigation allowed more detailed insight into the composite failure process and depicted critical parameters that led to the composite failure.

References

A. Misra, J.P. Hirth, R.G. Hoagland: Acta Mater, 53 (2005) 4817−4824.

Crossreff

A. Giguere, N.H. Hai, N. Dempsey, D. Givord: J Magn Magn Mater, 242-245 (2002) 581-584.

Crossreff

R. Jamaati, M.R. Toroghinejad: Mat Sci Eng A-Struct, 527 (2010) 4146-4151.

Crossreff

S.V. Kamat, J.P. Hirth, R. Mehrabian: Acta Metall Mater, 37 (1989) 2395-2402.

Crossreff

R. Yousefian, E. Emadoddin, S. Baharnezhad: Rev Adv Mater Sci, 55 (2018) 1-11.

Crossreff

M.T. Jovanović, N. Ilić, I. Cvijović-Alagić, V. Maksimović, S. Zec: Trans Nonferrous Met Soc China, 27 (2017) 1907-1919.

Crossreff

H.N.G. Wadley, L.M. Hsiung, R.L. Lankey: Compos Eng, 5 (1995) 935-940.

Crossreff

D.M.A. Nabi Rahni, P.T. Tang, P. Leisner: Nanotechnology, 7 (1996) 134-143.

Crossreff

P.J. Hsieh, Y.P. Hung, J.C. Huang: Scripta Mater, 49 (2003) 173-178.

Crossreff

L. Battezzati, C. Antonione, F. Fracchia: Intermetallics, 3 (1995) 67-71.

Crossreff

Y. Saito, H. Utsunomiya, N. Tsuj, T. Sakai: Acta Mater, 47 (1999) 579-583.

Crossreff

M. Alizadeh, M. Paydar, M. Alizadeh, M.H. Paydar: J Alloys Compd, 477 (2009) 811-816.

Crossreff

H.W. Kim, S.B. Kang, N. Tsuji, Y. Minamino: Acta Mater, 53 (2005) 1737-1749.

Crossreff

S.D. Antolovich, A.M. Gokhale, C. Bathias, In: Quantitative Methods in Fractography. Eds: B.M. Strauss, S.K. Putatunda, ASTM, Philadelphia, PA, 1990, 3-25.

E.E. Underwood, K. Banerji: ASM Handbook vol. 12 - Fractography, 9th edition, ASM International, Metals Park, OH, 1999, 193-210.

Z. Cvijović, M. Vratnica, I. Cvijović-Alagić: Int J Damage Mech, 20 (2011) 179-193.

Crossreff

Material Properties Database, https://www.makeitfrom.com/material-properties/8011A-O-Aluminum Accessed 1 October 2020.

R.O. Ritchie, A.W. Thompson: Metall Mater Trans A, 16A (1985) 233-248.

Crossreff

Published
2020-11-12
Section
Milan Jovanović - Memorial Issue