Effect of chemical composition on the microstructure, hardness and electrical conductivity profiles of the Bi-Ge-In alloys

  • Aleksandar Djordjevic University of Priština, Faculty of Technical Science, Kneza Miloša 7, 38220 Kos. Mitrovica, Serbia
  • Milena Premovic University of Priština, Faculty of Technical Science, Kneza Milosa 7, Kos. Mitrovica, Serbia; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China.
  • Dusko Minic University of Priština, Faculty of Technical Science, Kneza Miloša 7, 38220 Kos. Mitrovica, Serbia
  • Milan Kolarevic University of Kragujevac, Faculty of Mechanical and Civil Engineering in Kraljevo, Kraljevo, Serbia
  • Milica Tomovic University of Priština, Faculty of Technical Science, Kneza Miloša 7, 38220 Kos. Mitrovica, Serbia
Keywords: phase equilibrium, mathematical model, hardness, electrical conductivity

Abstract

In this study, the microstructure, hardness, and electrical properties of selected ternary Bi-Ge-In alloys were investigated. Isothermal sections of the Bi-Ge-In system at 25, 200, and 300 ° C were extrapolated using optimized thermodynamic parameters from the literature. The used experimental techniques include optical microscopy, X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS), Brinell hardness, and electrical conductivity measurements. The results of EDS phase composition analysis were compared with the calculated isothermal sections and a good overall agreement was reached. The results of the XRD were also in line with the predicted phase balance. By using ANOVA analysis and experimental results of Brinell hardness and electrical conductivity, a mathematical model was suggested for the calculation of these properties along with all composition ranges. The appropriated mathematical model was subsequently used for the prediction of hardness and electrical conductivity throughout the whole composition range.

References

A. Djordjević, D. Minić, M. Premović, D. Manasijević, V. Ćosović: JPED, 40 (4) (2019) 623-637.

Crossref

W. Cao, S. L. Chen, F. Zhang, K. Wu, Y. Yang, Y. A. Chang, R. Schmid-Fetzer, W. A. Oates: Calphad, 33(2) (2009) 328-342.

Crossref

G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, R.S. Shenoy: IBM J Res Dev, 52(4-5) (2008) 449-464.

Crossref

T. C. Chong, X. Hu, L. P. Shi, P. K. Tan, X. S. Miao, R. Zhao: Jpn. J Appl Phys, 42 (2B) (2003) 824-827.

Crossref

J. Solis, C.N. Afonso, J.F. Trull, and M.C. Morilla: J Appl Phys, 75 (12) (1994) 7788-7793.

Crossref

S. Raoux and T.J. Ibm, Phase Change Memory (PCM) Materials and Devices Y. Nishi, Ed., 2nd ed., Advances in Nonvolatile Memory and Storage Technology, 2014, 161-199.

Crossref

T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, M. Wuttig: Nat Mater, 10 (2011) 202-208.

Crossref

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takao: Jpn J Appl Phys, 26 (1987) 61-66.

Crossref

M. Premović, D. Minić, V. Cosović, D. Manasijević, D. Živković: Metall Mater Trans A, 45A (2014) 4829-4841.

Crossref

D. Milisavljević, D. Minić, M. Premović, D. Manasijević, V. Ćosović, N. Košanin: Int J Thermophys, 40 (3) (2019) 29-42.

Crossref

C. Sinn-wen, H. Yohanes, G. Wojciech, W. Chao-hong, L. Shi-ting: Calphad, 68 (2020) 101744.

Crossref

R. Novakovic, E. Ricci, D. Giuranno, T. Lanata, S. Amore: Calphad, 33 (2009) 69-75.

Crossref

V.T. Witusiewicz, U. Hecht, B. Böttger, S. Rex: J Alloys Compounds, 428 (2007) 115-124.

Crossref

D. Boa, I. Ansara: Thermochim Acta, 314 (1998) 79-86.

Crossref

P. Y. Chevalier: Thermochim Acta, 155 (1989) 227-240.

Crossref

P. Y. Chevalier: Thermochim Acta, 132 (1988) 111-116.

Crossref

A. S. Cooper: Acta Cryst, 15 (1962) 578-582.

Crossref

P. Cucka, C. S. Barrett: Acta Cryst, 15 (1962) 865-875.

Crossref

Link , access 29.11.2018

M. J. Anderson, P. J. Whitcomb, RSM Simplified, Optimizing Processes Using Response Surface Methods for Design of Experiments, Second Edition, CRC Press, Taylot & Francis Group, 2017.

Crossref

G. E. P. Box, N. R. Draper, Response Surfaces, Mixtures, and Ridge Analyses, Second Edition, Wiley, 2007.

Stat-Ease, Handbook for Experimenters, Version 11.00, Stat-Ease, Inc. 2018.

D. C. Montgomery, Design and Analysis of Experiments, Ninth Edition, Wiley, 2017.

R. H. Myers, D. C. Mongomery, C. M. Anderson-Cook, Response Surface Methodology, Process and Product Optimization Using Designed Experiments, Fourth Edition, Wiley, 2016.

Link , access 25.12.2018.

Published
2020-12-31
Section
Milan Jovanović - Memorial Issue