Effect of post weld heat treatment on metallurgical and mechanical properties of electron beam welded AISI 409 ferritic steel


  • Akash Doomra Department of Mechanical Engineering, IK Gujral Punjab Technical University, Kapurthala (Punjab), India
  • Sandeep Singh Sandhu Department of Mechanical Engineering, Quest Infosys Foundation Group of Institutions, Mohali (Punjab), India
  • Beant Singh Department of Mechanical Engineering, Universal Group of Institutions, Mohali (Punjab), India




AISI 409 ferritic stainless steel, Electron beam welding, mechanical properties, microstructure analysis, post weld heat treatment, XRD; Fractographs


The applicability of ferritic stainless steel is restricted due to its low weldability, and this can be attributed to the severe grain growth in the weld zone during the solidification of the weld pool and formation of fully ferritic structure. This study aims to investigate the weldability of 18 mm thick AISI 409 ferritic stainless steel plates using an electron beam welding process without the use of filler metal. The joints were investigated for metallography characterization (microstructure, macrostructure, and microhardness) and mechanical behavior (tensile strength and impact toughness) in as-welded condition and after post-weld heat treatment at 550 ºC for 75 minutes. The weld zone exhibited large columnar grains in the direction perpendicular to the weld centerline and got refined after post-weld heat treatment. The ultimate tensile strength, yield strength, and microhardness of the weld zone were found higher than the base metal. The impact toughness of weld zone was found to be reduced by 45%, but the post-weld heat treatment improved the toughness by 40%. Results revealed that the electron beam welding process could be successfully employed for welding of AISI 409 ferritic stainless steel, which will increase its application range that requires thicker section of welded plates. Post-weld heat treatment was found to be advantageous for improving the microstructure and mechanical properties.


D.J. Kotecki, T.A. Siewert: Weld Res Suppl, 71 (1992) 171-178.

K.A. Cashell, N.R. Baddoo: Thin-Walled Struct, 83 (2014) 169-181.


M.O.H. Amuda, S. Mridha: Mater Des, 47 (2013) 365-371.


S. Anttila, P. Karjalainen, S. Lantto: Weld World, 57 (2013) 335-347.

N.E. Dan, S.N.S. Mohd Sabri, P. Hussain, H. Mohebbi, In: J. Phys. Conf. Ser., IOP Publishing, 2018, pp. 1-6.

T.C. Mamphekgo, V.J. Matjeke, K. Pillay, In: IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing, 2018, pp. 1-8.

E. Deleu, A. Dhooge, E. Taban, E. Kaluc: Weld World, 53 (2009) 198-208.


M.O.H. Amuda, E. Akinlabi, M. S.: Ref Modul Mater Sci Mater Eng (2016) 1-18.

C.J. Van Niekerk, M. Du Toit, M.W. Erwee: Weld World, 56 (2012) 55-64.


M. Du Toit, C.J. Van Niekerk: J South African Inst Min Metall, 111 (2011) 243-256.

E. Taban, E. Deleu, A. Dhooge, E. Kaluc: Mater Des, 30 (2009) 1193-1200.


D.H. Kah, D.W. Dickinson: Weld Res Suppl, 60 (1981) 135-142.

M.O.H. Amuda, S. Mridha: Adv Mater Res, 86 (2010) 1165-1172.


T. Mohandas, G. Madhusudhan Reddy, M. Naveed: J Mater Process Technol, 94 (1999) 133-140.


A.K. Lakshminarayanan, K. Shanmugam, V. Balasubramanian: J Iron Steel Res Int, 16 (2009) 62-68.


G. Ipekoglu, T. Kucukomeroglu, S.M. Aktarer, D.M. Sekban, G. Cam: Mater Res Express, 6 (2019) 1-8.


T. Küçükömeroğlu, S.M. Aktarer, G. İpekoğlu, G. Çam: Int J Miner Metall Mater, 25 (2018) 1457-1464.


G. Çam, G. Ipekoglu, T. Küçükömeroglu, S.M. Aktarer: J Achiev Mater Manuf Eng, 80 (2017) 65-85.


T. Küçükömeroğlu, S.M. Aktarer, G. İpekoğlu, G. Cam: Mater Test, 60 (2018) 1163-1170.


G. Çam, M. Koçak: Int Mater Rev, 43 (1998) 1-44.


G. Çam, Ç. Yeni, S. Erim, V. Ventzke, M. Koçak: Sci Technol Weld Join, 3 (1998) 177-189.


J.F. dos Santos, G. Cam, S. Riekehr, V. Ventzke: Weld World, 44 (2000) 42-64.

G. Çam, M. Koçak: Sci Technol Weld Join, 3 (1998) 105-126.


G. Çam: Int Mater Rev, 56 (2011) 1-48.


A. Kumar, S.S. Sandhu, B. Singh, In: Miner. Met. Mater. Ser., Springer International Publishing, 2020, pp. 169-180.

C.L.M. Cottrell: Mater Des, 6 (1985) 285-291.


A.K. Lakshminarayanan, V. Balasubramanian, G.M. Reddy: Int J Adv Manuf Technol, 1 (2011) 153-162.


M. Tullmin, F.P.A. Robinson, C.A.O. Henning, A. Strausst, J. Le Grange: J South Afr Inst Min Metall, 89 (1989) 243-249.

P. Havlík, P. Šohaj, J. Kouril, R. Foret, I. Dlouhý: Methods, 4 (2014) 5-6.

S.S. Sandhu, A.S. Shahi: J Mater Process Technol, 233 (2016) 1-8.


E. Taban, E. Kaluc, A. Dhooge: Mater Des, 30 (2009) 4236-4242.


M. Keskitalo, J. Sundqvist, K. Mäntyjärvi, J. Powell, A.F.H. Kaplan: Phys Procedia, 78 (2015) 222-229.


M.S. Rajadurai, S. Naveen, M. Afnas, T. Arun, N. Kumar, S. Surendhar: Int J Recent Dev Eng Technol, 4 (2015) 23-36.

A. Doomra, S.S. Sandhu, B. Singh: Int J Eng, 18 (2020) 23-28.


R.S. Vidyarthy, D.K. Dwivedi, M. Vasudevan: J Mater Eng Perform, 26 (2017) 1391-1403.


V.L. Manugula, K. V. Rajulapati, G.M. Reddy, K.B.S. Rao: Mater Sci Eng A, 698 (2017) 36-45.


ASTM Standard E8, ASTM Int. (2013) 1-27.

ASTM standard E 23-12c, ASTM Int. (2013) 1-25.

C. Kose, C. Topal: Mater Res Express, 6 (2019) 1-20.


J.C. Lippold, D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steel, A Wiley-Inderscience publication, 2006.

ASTM standard E3-11, ASTM Int. 82 (2016) 1-15.

ASTM Standard E407-99, ASTM Int. (2012) 1-21.

S.K. Gupta, A.R. Raja, M. Vashista, M.Z.K. Yusufzai: Mater Res Express, 6 (2018) 1-46.


A.K. Lakshminarayanan, V. Balasubramanian: Mater Manuf Process, 26 (2011) 37-41.


electron beam welding




How to Cite

Doomra, Akash, Sandeep Singh Sandhu, and Beant Singh. 2020. “Effect of Post Weld Heat Treatment on Metallurgical and Mechanical Properties of Electron Beam Welded AISI 409 Ferritic Steel”. Metallurgical and Materials Engineering 26 (3):279-92. https://doi.org/10.30544/545.