The load dependence of the micro-hardness of the blast furnace slag

  • jozef Petrík Technical University of Košice, Faculty of Materials, Metallurgy and Recycling, 042 00, Slovakia
  • Peter Blaško Technical University of Košice, Faculty of Materials, Metallurgy and Recycling, 042 00, Slovakia
  • Vojtech Mikloš Technical University of Košice, Faculty of Materials, Metallurgy and Recycling, 042 00, Slovakia
  • Alena Pribulová Technical University of Košice, Faculty of Materials, Metallurgy and Recycling, 042 00, Slovakia
  • Peter Futaš Technical University of Košice, Faculty of Materials, Metallurgy and Recycling, 042 00, Slovakia
  • Andrea Vasilňaková Technical University of Košice, Faculty of Materials, Metallurgy and Recycling, 042 00, Slovakia
  • Marek Šolc Technical University of Košice, Faculty of Materials, Metallurgy and Recycling, 042 00, Slovakia
Keywords: grinding; iron slag; ISE; micro-hardness.

Abstract

Deposits of old blast-furnace slag are an environmental problem. The slag’s hardness is an important for calculation of the energy cost for crushing and grinding process. Due to its porosity, measurement of the (macro) hardness is. To adapt the dimensions of the indentations to the character of the slag, it is necessary to apply loads in the range of micro-hardness. The purpose of this paper is to evaluate the influence of load on the micro-hardness - the Indentation Size Effect (ISE) using Meyer’s, Hays-Kendall and PSR methods. ISE for all samples is “normal”, the slag’s basicity affects micro-hardness and ISE.

References

W. Ling, T. Pei, Y. Yan, Application of ground granulated blast furnace slag in high-performance concrete in China: International Workshop on Sustainable Development and Concrete Technology, Beijing, 2004, 309-317.

Mineral Commodity Summaries, Iron and Steel Slag Statistics and Information 2012, Link (accessed: Sept 2017).

Mineral Commodity Summaries, Iron and Steel Slag Statistics and Information 2000. Link (accessed: Sept 2017).

V. Veselská, J. Majzlan: Environ Sci Polut R, 23 (2016) 7308-7323.

Crossreff

F. Michalíková, V. Jacko, M. Sisol, Ľ. Kozáková: Acta Montanistica Slovaca, 10 (1) (2005) 91-96. (in Slovak)

Link

J. Legemza, Š. Majerčák: Acta Metallurgica Slovaca, 7 (2001) 113-116.

A. Ene, A. Pantelică: Rom J Phys, 7 (2011) 1011-1018.

Link

Pribulová, P. Futaš, D. Baricová: Production engineering archives, 11(2) (2016) 2-5. [9] G. Bulut: Waste Manag Res, 24 (2006) 1-7.

Crossreff

Y. Li, H.H. Sun, X. M. Liu: Sci China Ser E - Tech Sci. 52 (2009) 2695-2699.

Crossreff

U.S. Federal Highway Administration Research and Technology, User Guidelines for Waste and Byproduct Materials in Pavement Construction 2016, 139-140 Link (accessed: Oct 2017).

A.Y. Ilyushechkin, D.G. Roberts, D. French, D.J. Harris, IGCC Solids Disposal and Utilisation, final report for ANLEC project 5-0710-0065. Common wealth Scientific and Industrial Research Organisation, (CSIRO), Australia 2012.

D. Betancourt, D. Chicot, S. Kossman, G. Louis, F. D. Roudet: Constr Build Mater 199 (2019) 349-358.

Crossreff

G. Wang, Ph.D. Thesis, Properties and utilization of steel slag in engineering applications, The University of Wollongong 1992. Link , 1992 (accessed 30 October 2017).

Z. Liu, Y. Zong, H. Ma, W. D. Dai: Adv Appl Ceram, 113 (7) (2014) 394-403.

Crossreff

K. Sangwal: Mater Chem Phys, 63 (2) (2000) 145-152.

Crossreff

A. Abu El-Fadl, A. Soltan, N. Shaalan: Cryst Res Technol 42 (4) (2007) 364-377.

Crossreff

K. Sangwal, B. Surowska, P. Błaziak: Mater Chem Phys, 77(2) (2003) 511-520.

Crossreff

C. Chuenarrom, P. Benjakul, P. Daosodsai: Mat Res, 12 (4) (2009) 473-476.

Crossreff

J. Petrík: Arch Metall Mater, 61 (2016) 1819-1824.

Crossreff

J. Gong, J. Wu, Z. Guan: J Eur Ceram Soc, 19 (1999) 2625-2631.

Crossreff

X. Ren, R. Hooper, C. Griffiths: Mater Sci Lett, 22 (2003) 1105-1106.

Crossreff

ISO 6507-2, Metallic materials. Vickers hardness test. Part 2: Verification and calibration of testing machines, Brussels, EU 2018.

ISO 6507-1, Metallic materials. Vickers hardness test. Part 1: Test method. Brussels, EU 2018.

H. Li, R. Bradt: J Mater Sci, 28 (1993) 917-926.

Crossreff

B. Michels, G. Frischat: J Mater Sci, 17 (1982) 329-334.

Crossreff

H. Kim, T. Kim: J Eur Ceram Soc, 22 (2002) 1437-1445.

Crossreff

J. Petrik, P. Palfy: Metrol Meas Syst, 18(2) (2011) 223-234.

Crossreff

G. Agarwal: J Non-Cryst Solids, 130 (1991) 187-197.

Crossreff

C. Fredericci: J Non-Cryst Solids, 273 (2000) 64-75.

Crossreff

J. Ostrowski: J. Rzechuła, J Non-Cryst Solids, 64 (1984) 334-441.

Crossreff

S. R. Teixeira: A. E. Souza, C. L. Carvalho, V. C. S. Reynoso, M. Romero, J. Ma. Rincón: Mater Charact, 98 (2014) 209-214.

Crossreff

M. M. Smedskjaer, M. Jensen, Y. Z. Yue: J Am Ceram Soc, Section of Chemistry. 91(2) (2008) 514-518.

Crossreff

M. Takeda, T. Onishi, S. Nakakubo, S. Fujimoto: Mater Trans, 50 (2009) 2242-2246.

Crossreff

Published
2020-09-30
Section
Research