Displacement Analysis of the MEMS Device

  • Ishak Ertugrul Mus Alparslan University, Faculty of Technical Science, Department of Mechatronics, Mus, 49100, Turkey
Keywords: MEMS; displacement; metallic materials; current.

Abstract

In this study, the displacement analysis of the microelectromechanical system (MEMS) device was performed. The current passing through the microdevice radiates heat energy as it pushes the device to the desired distance through thermal expansion. The amount of expansion varies depending on the current flowing through the device. With the designed model, the amount of current required for the displacement of the MEMS device is determined. In addition, the displacements produced in the microdevice for different metallic materials (silver and gold) and input potentials (0.4 V, 0.8 V, and 1.2 V) were calculated. These types of materials are frequently preferred in MEMS technology due to their high conductivity. Increasing the voltage value as a result of the analysis studies increased the displacement of the materials. When 1.2 V voltage is applied, the highest displacement values for silver and gold are; 6.45 μm, 4.32 μm, respectively. According to the results, the silver material showed a significant displacement compared to gold material.

References

R. Crescenzi, M. Balucani, N.P. Belfiore: Journal of Micromechanics and Microengineering, 28 (2018) 154-161.

Crossreff

M.K. Mishra, V. Dubey, P.M. Mishra, I. Khan: Journal of Engineering Research and Reports, 5 (2019) 1-24.

Crossreff

R. Lu, M. Li, Y. Yang: Journal of Microelectromechanical Systems, 28 (2019) 209-218.

Crossreff

H. Singh, J. Malhotra: Trans Electr Electron Mater (TEEM), 18 (2017) 16-20.

Crossreff

H. Madinei, H. Khodaparast, M.I. Friswell: Energy, 149 (2018) 990-999.

Crossreff

O. Ulkir: Materials Research Express, 7 (2020) 075015.

Crossreff

S. Nihtianov, A. Luque, Editors: Smart Sensors and MEMS, 2nd edition, Woodhead Publishing, 2018, 28-36.

Crossreff

T. L. Narayana, K. G. Sravani, K. S. Rao: Cogent Engineering, 4 (2017) 1363356.

Crossreff

H. Jiang, M. Huang, Y. Yu, X. Tian, X. Zhao: Sensors, 18 (2018) 94.

Crossreff

M. Pallay, R. N. Miles, S. Towfighian: IEEE Transactions on Industrial Electronics, 67 (2020) 9833 - 9840.

Crossreff

Y. Mita, E. Lebrasseur, Y. Okamoto, F. Marty, R. Setoguchi, K. Yamada: Japanese Journal of Applied Physics, 56 (2017) 06GA03.

Crossreff

H. O. Ali: Transactions of the IMF, 95 (2017) 290-296.

Crossreff

M. R. Solouk, M. H. Shojaeefard, M. Dahmardeh: Mechanical Systems and Signal Processing, 128 (2019) 389-404.

Crossreff

J. Rodriguez, D.D. Gerrard, G. M. Glaze, S. Chandorkar, L. Comenecia, Y. Chen, In: IEEE Sensors, 2017, 17452390.

Crossreff

U. Brand, S. Gao, W. Engl, T. Sulzbach, S. W. Stahl, L. F. Milles, Z. Li: Measurement Science and Technology, 28 (2017) 034010.

Crossreff

M. Vutukuru, J. W. Christopher, C. Pollock, D. J. Bishop, A. K. Swan: Journal of Microelectromechanical Systems, 28 (2019) 550-557.

Crossreff

K. Özsoy, B. Duman, D. İçkale Gültekin: SDU International Journal of Technological Science, 11 (2019) 201-210.

Link

M. Y. Kayacan, K. Özsoy, B. Duman, N. Yilmaz, M. C. Kayacan: Materials and Manufacturing Processes, 34 (2019) 1467-1475.

Crossreff

H. A. Hassen, K. Sofiane, Z. Bilel, Z. Ihsen, K. Sondes: The Pan African Medical Journal, 33 (2019) 107.

Crossreff

Published
2020-09-02
Section
Modeling and simulation in metallurgical and materials engineering