Isothermal models of Chromium (VI) adsorption by using Fe3O4 nanoparticles
Cr(VI) adsorption on Fe3O4 nanoparticles
DOI:
https://doi.org/10.30544/489Keywords:
Fe3O4 ferromagnetic nanoparticles, adsorption, Cr(VI), equilibrium, Redlich-Peterson.Abstract
The ferromagnetic Fe3O4 nanoparticles with the average particle size of about 10 nm were used to adsorb chromium (VI) in aqueous solution. The equilibrium of Cr(VI) adsorption can be achieved at the pH value of 2.5, in the contact time of 120 minutes. The mechanisms of Cr(VI) adsorption were evaluated by 4 isothermal adsorption models Langmuir, Freundlich, Redlich-Peterson, and Temkin. The results showed that all four models are satisfied; especially, Redlich-Peterson is the most suitable model to describe the adsorption kinetic of Cr(VI) on ferromagnetic Fe3O4 nanoparticles.
References
Y. Wang, J. Shi, H. Wang, Q. Lin, X. Chen, Y. Chen: Ecotox Environ Safe, 67 (2007) 75-81.
A. R. Wadhawan, A. T. Stone, E. J. Bouwer: Environ Sci Technol, 47 (2013) 8220-8228.
B. Dhal, H. N. Thatoi, N. N. Das, B. D. Pandey: J Hazard Mater, 250 (2013) 272-291.
L. F. Fenglian, W. Qui: J Environ Manag, 92 (2013) 407-418.
L. Zhou, C. Gao, W. J. Xu: App Mater Inter, 2 (2010) 1483-1491.
H. Gao et al: RSC Adv, 5 (2015) 60033-60040.
A. Maleki, B. Hayati, M. Naghizadeh, S. W. Joo: J Ind Eng Chem, 28 (2015) 211-216.
A. Adamczuk, D. Kolodynska: Chem Eng J, 274 (2015) 200-212.
L. V. Zhongfei et al: RSC Adv, 5 (2015) 18213-18217.
V. Kumari, M. Sasidharan, A. Bhaumik: Dal Trans, 44 (2015) 1924-1932.
J. Hu, I. M. C. Lo, G. Chen: Langm, 21 (2005) 11173-11179.
S. R. Kanel, J. M. Greneche, H. Choi: Environ Sci Tech, 40 (2006) 2045-2050.
P. Wang, M. C. Irene: Water Res, 43 (2006) 727-3734.
Y. H. Chen, D. Y. Liu, J. F. Lee: Phys Chem Miner, 45 (2018) 907-913.
Y.F. Shena, J. Tang, Z. H. Niea, Y. D. Wanga, Y. Renc, L. Zuo: Sep Purif Technol, 68 (2009) 312-319.
B. S. Damascenoa, A. F. V. Silvab, A. C. V. Araujo: J Environ Chem Eng, 8 (2020) 103994.
X. Liua, J. Tiana, Y. Lia, N. Suna, S. Mia, Y. Xiea, Z. Chen: J Hazard Mater, 373 (2019) 397-407.
T. Shahriari, G. N. Bidhendi, N. Mehrdadi, A. Torabian: Inter J Environ Sci Tech, 11 (2014) 349-356.
E. Demibas, M. Kobya, E. Sentuk, T. Ozkan: Water SA, 30 (2004) 533-539.
V. Miroslava et al, Water treatment technologies for the removal of high-toxicity pollutants, The NATO Science for Peace and Security Series C: Environmental Security book series NAPSC, 2008, 13-17.
K. Y. Foo, B. H. Hameed: Chem Eng J, 156 (2010) 2-10.
S. S. Baral, N. S. Das, R. Pradip: Biochem Eng J, 31 (2006) 216-222.
N. Ayawei et al: J Chem, 1 (2017) 1-11.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Bùi Xuân Vương

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their published articles online (e.g., in institutional repositories or on their website, social networks like ResearchGate or Academia), as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.