Isothermal models of Chromium (VI) adsorption by using Fe3O4 nanoparticles

Cr(VI) adsorption on Fe3O4 nanoparticles

  • Dang Tan Hiep Faculty of Chemical Engineering, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, 700000, Vietnam
  • Bui Thi Hoa Institute of Theoretical and Applied Research, Duy Tan University, Hanoi, 100000, Vietnam
  • Ngo Thi My Thanh Faculty of Chemical Technology and Food, Ho Chi Minh City Industry and Trade College, 20 Tang Nhon Phu, District 9, Ho Chi Minh City, 700000, Vietnam
  • Nguyen Viet Long Department of Electronics and Telecommunication, Sai Gon University, 273 An Duong Vuong, District 5, Ho Chi Minh City, 700000, Vietnam
  • Le Hong Phuc Ho Chi Minh City Institute of Physics, Vietnam Academy of Science and Technology, 01 Mac Dinh Chi St, District 01, Ho Chi Minh City, 700000, Vietnam
  • Bùi Xuân Vương 8Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
Keywords: Fe3O4 ferromagnetic nanoparticles, adsorption, Cr(VI), equilibrium, Redlich-Peterson.

Abstract

The ferromagnetic Fe3O4 nanoparticles with the average particle size of about 10 nm were used to adsorb chromium (VI) in aqueous solution. The equilibrium of Cr(VI) adsorption can be achieved at the pH value of 2.5, in the contact time of 120 minutes. The mechanisms of Cr(VI) adsorption were evaluated by 4 isothermal adsorption models Langmuir, Freundlich, Redlich-Peterson, and Temkin. The results showed that all four models are satisfied; especially, Redlich-Peterson is the most suitable model to describe the adsorption kinetic of Cr(VI) on ferromagnetic Fe3O4 nanoparticles.

References

Y. Wang, J. Shi, H. Wang, Q. Lin, X. Chen, Y. Chen: Ecotox Environ Safe, 67 (2007) 75-81.

Crossreff

A. R. Wadhawan, A. T. Stone, E. J. Bouwer: Environ Sci Technol, 47 (2013) 8220-8228.

Crossreff

B. Dhal, H. N. Thatoi, N. N. Das, B. D. Pandey: J Hazard Mater, 250 (2013) 272-291.

Crossreff

L. F. Fenglian, W. Qui: J Environ Manag, 92 (2013) 407-418.

Crossreff

L. Zhou, C. Gao, W. J. Xu: App Mater Inter, 2 (2010) 1483-1491.

Crossreff

H. Gao et al: RSC Adv, 5 (2015) 60033-60040.

Crossreff

A. Maleki, B. Hayati, M. Naghizadeh, S. W. Joo: J Ind Eng Chem, 28 (2015) 211-216.

Crossreff

A. Adamczuk, D. Kolodynska: Chem Eng J, 274 (2015) 200-212.

Crossreff

L. V. Zhongfei et al: RSC Adv, 5 (2015) 18213-18217.

Crossreff

V. Kumari, M. Sasidharan, A. Bhaumik: Dal Trans, 44 (2015) 1924-1932.

Crossreff

J. Hu, I. M. C. Lo, G. Chen: Langm, 21 (2005) 11173-11179.

Crossreff

S. R. Kanel, J. M. Greneche, H. Choi: Environ Sci Tech, 40 (2006) 2045-2050.

Crossreff

P. Wang, M. C. Irene: Water Res, 43 (2006) 727-3734.

Y. H. Chen, D. Y. Liu, J. F. Lee: Phys Chem Miner, 45 (2018) 907-913.

Crossreff

Y.F. Shena, J. Tang, Z. H. Niea, Y. D. Wanga, Y. Renc, L. Zuo: Sep Purif Technol, 68 (2009) 312-319.

Crossreff

B. S. Damascenoa, A. F. V. Silvab, A. C. V. Araujo: J Environ Chem Eng, 8 (2020) 103994.

Crossreff

X. Liua, J. Tiana, Y. Lia, N. Suna, S. Mia, Y. Xiea, Z. Chen: J Hazard Mater, 373 (2019) 397-407.

Crossreff

T. Shahriari, G. N. Bidhendi, N. Mehrdadi, A. Torabian: Inter J Environ Sci Tech, 11 (2014) 349-356.

Crossreff

E. Demibas, M. Kobya, E. Sentuk, T. Ozkan: Water SA, 30 (2004) 533-539.

Crossreff

V. Miroslava et al, Water treatment technologies for the removal of high-toxicity pollutants, The NATO Science for Peace and Security Series C: Environmental Security book series NAPSC, 2008, 13-17.

K. Y. Foo, B. H. Hameed: Chem Eng J, 156 (2010) 2-10.

Crossreff

S. S. Baral, N. S. Das, R. Pradip: Biochem Eng J, 31 (2006) 216-222.

Crossreff

N. Ayawei et al: J Chem, 1 (2017) 1-11.

Crossreff

Published
2020-07-28
Section
Nanomaterials: Synthesis, Characterization and Applications