Phase transformations and thermal conductivity of the In-Ag alloys

  • Dragan Miroslav Manasijevic University of Belgrade, Technical Faculty in Bor, Bor, Serbia
  • Ljubiša Balanović University of Belgrade, Technical Faculty in Bor, Bor, Serbia
  • Ivana Markovic University of Belgrade, Technical Faculty in Bor, Bor, Serbia
  • Milan Gorgievski University of Belgrade, Technical Faculty in Bor, Bor, Serbia
  • Uros Stamenkovic University of Belgrade, Technical Faculty in Bor, Bor, Serbia
  • Dusko Minic University of Priština, Faculty of Technical Sciences, Kosovska Mitrovica, Serbia
  • Milena Premovic University of Priština, Faculty of Technical Sciences, Kosovska Mitrovica, Serbia
  • Nada Strbac University of Belgrade, Technical Faculty in Bor, Bor, Serbia
Keywords: In–Ag system; DSC; solidification; thermal conductivity.

Abstract

Phase transformations and thermal conductivity of three In-Ag alloys with 5, 15, and 45 wt.% of Ag were experimentally investigated in the present work. Phase transition temperatures were measured using differential scanning calorimetry (DSC). DSC heating scans were compared with the equilibrium and non-equilibrium solidification paths, calculated by using optimized thermodynamic parameters from literature and calculation of phase diagrams (CALPHAD) method.  The flash method was employed for the determination of thermal diffusivity and thermal conductivity of the investigated alloys in the temperature range from 25 to 100 °C. It has been found that an increase in silver content does not lead to an increase in the thermal conductivity of the investigated alloys. Thermal conductivities for all three investigated In-Ag alloys slightly decrease with temperature increasing.

References

ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Materials Park, OH, ASM International, 1990.

A. Reti: Silver: Alloying, Properties, and Applications. In: Encyclopedia of Materials: Science and Technology, Elsevier, 2001. pp. 8618-8621.

Crossreff

Z. Moser, W. Gasior, J. Pstrus, W. Zakulski, I. Ohnuma, X. J. Liu, Y. Inohana & K. Ishida: J Electron Mater, 30 (2001) 1120-1128.

Crossreff

A. Kroupa, A.T. Dinsdale, A. Watson, J. Vrestal, J. Vízdal, A. Zemanova: JOM, 59 (2007) 20-25.

Crossreff

T. Kondo, Y. Ohishi, H. Muta, K. Kurosaki, S. Yamanaka: J Nucl Sci Technol, 55 (5) (2018) 568-574.

Crossreff

D. Manasijević, Lj. Balanović, V. Ćosović, D. Minić, M. Premović, M. Gorgievski, U. Stamenković, N. Talijan: Metall Mater Eng, 25 (4) (2019) 325-334.

Crossreff

W. Cao, S.L. Chen, F. Zhang K. Wu, Y. Yang, Y. A. Chang, R. Schmid-Fetzer, W. A. Oates: Calphad, 33 (2009) 328-342.

Crossreff

W.J. Boettinger, U.R. Kattner, K.W. Moon, J.H. Perepezko: DTA and Heat-flux DSC Measurements of Alloy Melting and Freezing. In: J.C. Zhao, ed. Methods for Phase Diagram Determination. Amsterdam: Elsevier Science; 2007, 151-221.

Crossreff

M.C. Flemings: Solidification Processing, McGraw Hill, NY, 1974, p. 177.

Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens: Thermal Conductivity of Metallic Elements and Alloys. Vol. 1. Washington, New York 1970.

Crossreff

M. Kövér, M. Behúlová, M. Drienovský, P. Motyčka: J Therm Anal Calorim, 122 (2015) 151-156.

Crossreff

W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott: J Appl Phys, 32 (1961) 1679-1684.

Crossreff

L. Huang, S. Liu, Y. Du, C. Zhang: Calphad, 62 (2018) 99-108.

Crossreff

J.K. Wu, K.L. Lin, B. Salam: J Electron Mater, 38 (2009) 227-230.

Crossreff

Y. Ocak, S. Aksöz, N. Maraşlı, K. Keşlioğlu: J Non-Cryst Solids, 356 (2010) 1795-1801.

Crossreff

Published
2020-09-30
Section
Research