Voronoi diagram based simulation and experimental validation of austenite in C22 and C35 steels

  • Sanchu S Division of Mechanical engineering, SOE, Cochin University of science and technology, Kochi India
  • Biju N, Prof. Division of Mechanical engineering, SOE, Cochin University of science and technology, Kochi India
  • V. N.N. Namboothiri Division of Mechanical engineering, SOE, Cochin University of science and technology, Kochi India
Keywords: simulation, austenitization, power Voronoi diagram

Abstract

This paper examines the ability of power Voronoi diagram assisted simulation in microstructure modeling during heat treatment. A model is developed for predicting fraction of austenite evolved during continuous heating of steel to austenite range, by integrating geometrical features of power Voronoi diagram and classical nucleation theory. From the simulation results, it is possible to predict the transformed fraction. The simulation results are validated using experiments conducted on two varieties of steels. The maximum error obtained is 2.08%. Thus, power Voronoi assisted simulation can be considered as an effective tool in modeling microstructure evolution during austenitization.

References

Totten, George E. Steel heat treatment metallurgy and technologies, second edition, CRC press, 2004.

William A Johnson, Robert F Mehl: Trans AIME, 135 (1939) 416-458.

Melvin Avrami: J Chem Phys, 7 (1939) 1103-1112.

Crossref

Melvin Avrami: J Chem Phys, 8 (1940) 212-224.

Crossref

Melvin Avrami: J Chem Phys, 9 (1941) 177-184.

Crossref

Kolmogorov, A N: Izv. Akad. Nauk. Ser. Mat., 3(1937) 355-360.

F. Liu, F. Sommer, C. Bos, E. J. Mittemeijer: Int Mater Rev, 52 (2007) 193-212.

Crossref

A.T.W. Kempen, F. Sommer, E.J. Mittemeijer: J Mater Sci, 37 (2002) 1321-1322.

Crossref

F. Liu, F. Somer, E.J. Mittemeijer: J Mater Sci, 39 (2004) 1621-1634.

Crossref

F G Caballero, C. Capdevila, Garcia De Andres: ISIJ Int, 41(2001) 1093-1102.

Crossref

Jiansheng Pen Cemil Hakan Gur: Thermal process modeling of steel, First edition, CRC Press, 2009, 313-337.

12.M. Miulitzer: ISIJ Int, 47 (2007), 1-15.

Crossref

D. Weaire, J. A. Glazier: Mater Sci Forum, 27 (1992) 94-96.

Crossref

D. Rabbe: Annu Rev Mater Res, 32 (2002) 53-76.

Crossref

Zhao hong-zhuang, LIU Xing-hua, Wang Guo-dong: J Iron Steel Res Int, 13 (2006) 68-73.

Crossref

Qin R S: Mater Manuf Processes: 26 (2011) 132-136.

Crossref

Oleg Shchyglo, Guanxing Du, Jenni K Engels, Ingo Steinbach: Acta Mater, 175 (2019) 415-425.

Crossref

S. Raghavan, S.S. Sahay: Mater SCi Eng A, 445-446 (2007) 203-209.

Crossref

B.J. Yang, A. Hittiangadi, W.Z. Li, G.F. Zhou, T.E. McGreevy: Mater Sci Eng, A 527 (2010) 2978-2984.

Crossref

B.J. Yang, L. Chuzhoy, M.L. Johnson: Comput Mater Sci, 41 (2007) 186-194.

Crossref

Jiansheng Pen Cemil Hakan Gur: Thermal process modeling of steel, First edition, CRC Press, 2009, 90-112.

A. Okabe, B. Boots, K. Sugihara, S. Nok Chiu: Spatial tessellations, second edition, JohnWiley and sons Ltd, 2000.

Crossref

S. Kanthi, S. Ziaei-Rad, N. Nouri, N. Saeidi, J. Kadkhodapour, N. Torabian, S. Schmauder: Metallogr Microstruct Anal, 2 (2013) 156-169.

Crossref

M. Nygards, P. Gudmundson: Mater Sci Eng A, 325 (2002) 435-443.

Crossref

M. Nygards, P. Gudmundson: Comput Mater Sci, 24 (2002) 513-519.

Crossref

N. Ishikawa, D.M. Parks, S. Socrate, M. Kurihara: ISIJ Int, 40 (2000) 1170-1179.

Crossref

H. Koushyar, B. Tavakol, V. Madhvan: Proceedings of fourth annual GRASP symposium, Wichita State university, 2008, 45-46.

F.G. Caballero, C. Capdevila, C. Garcia: Mater Sci Technol, 17 (2001) 1114-1118.

Crossref

G.R Speich, V.A. Demarest, R.L. Miller: Metall Trans A, 12 (1981) 1419-1428.

Crossref

G.R. Speich and A. Szirmae: Trans TMS-AIME, 1969, vol. 245, p. 1063.

D.P. Gokhale, A.M. Datta: Metall Trans A, 12 (1981) 443-450.

Crossref

R.C. Knorovsky, C.V. Dykhuizen, G.A. Robino: Metall Mater Trans B, 30 (1999) 107-117.

Crossref

E. Schmidt, Y. Wang, S. Sridhar: Metall Mat Trans A, 37 (2006) 1799-1810.

Crossref

V.I. Savran, S.E. Offerman, J. Sietsma: Metall Mat Trans A, 41 (2010) 583-591.

Crossref

G.P. Krielaart, M. Onink, K.M. Brakman, F.D. Tichelaar, E.J. Mittemejer, S. van der Zwaag: Zeitschrift fuer Metallkunde, 11 (1994) 756-765.

Link

S.E. Offerman, N.H. Ven Dijk, E.M. Lauridseno: Nucl Instrum Methods Phys, 246 (2006) 194-200.

Crossref

D. Gaude-Fugarolas, H.K.D.H. Bhadeshia: J Mater Sci, 38(2003) 1195-1201.

Crossref

V.I. Savran: Austenite formation in C-Mn steel, PhD Thesis, Link

J. Schindelin, I. Arganda-Carreras et al.: Nat Methods, 9 (2012) 676-682.

Crossref

S. Gupta, J. Sarkar, A. Banerjee, N.R. Bandyopadhyaya, S. Ganguly: Inst Eng India Ser D, 100 (2019) 203-210.

Crossref

J.W. Christian: The theory of transformations in metals and alloys, third edition, 2002, 797-813.

Crossref

Published
2020-04-16
Section
Modeling and simulation in metallurgical and materials engineering