Modeling and optimization of flank wear and surface roughness of Monel-400 during hot turning using artificial intelligence techniques

Authors

  • M. Hanief Mechanical Engineering Department, National Institute of Technology, Srinagar, Jammu & Kashmir 190006, India
  • M. S. Charoo Mechanical Engineering Department, National Institute of Technology, Srinagar, Jammu & Kashmir 190006, India

DOI:

https://doi.org/10.30544/473

Keywords:

model, artificial neural network, genetic algorithm, flank wear, surface roughness, turning

Abstract

This work aims to model and investigate the effect of cutting speed, feed rate, depth of cut and the workpiece temperature on surface roughness and flank wear (responses) of Monel-400 during turning operation. It also aims to optimize the machining parameters of the above operation. A power-law model is developed for this purpose and is corroborated by comparing the results with the artificial neural network (ANN) model. Based on the coefficient of determination (R2), mean square error (MSE), and mean absolute percentage error (MAPE) the results of the power-law model are found to be in close agreement with that of ANN. Also, the proposed power law and ANN models for surface roughness and flank wear are in close agreement with the experiment results. For the power-law model R2, MSE, and MAPE were found to be 99.83%, 9.9×10-4, and 3.32×10-2, and that of ANN were found to be 99.91%, 5.4×10-4, and 5.96×10-2, respectively for surface roughness and flank wear. An error of 0.0642% (minimum) and 8.7346% (maximum) for surface roughness and 0.0261% (minimum) and 4.6073% (maximum) for flank wear were recorded between the observed and experimental results, respectively. In order to optimize the objective functions obtained from power-law models of the surface roughness and flank wear, GA (genetic algorithm) was used to determine the optimal values of the operating parameters and objective functions thereof. The optimal value of 2.1973 µm and 0.256 mm were found for surface roughness and flank wear, respectively.

References

A. Srithar, K. Palanikumar, B. Durgaprasad: Procedia Engineering, 97 (2014) 72 - 77.

Crossreff

K. Katuku, A. Koursaris and I. Sigalas: J Mater Process Technol, 209 (2009) 2412-2420.

Crossreff

S. Yamamoto, H. Nakajima, H. Miyaji: Trans Iron Steel Inst Jpn, 81 (7), 2005, 721-726.

Crossreff

T. Özel, Y. Karpat: International Journal of Machine Tools Manufacture, 45 (2005) 467-479.

Crossreff

Z. Hessainia, A. Belbah, M.A. Yallese, T. Mabrouki, J.F. Rigal: Measurement, 46 (2013) 1671-1681.

Crossreff

N. Mandal, B. Doloi, B. Mondal, R. Das: Measurement, 44 (2011) 2149-2155.

Crossreff

E.O. Ezugwu: J Brazilian Soc Mech Sci Eng, 26 (2004) 1-11.

Crossreff

E.O. Ezugwu, Z.M. Wang, A.R. Machado: J Mater Process Technol, 86 (1999) 1-16.

Crossreff

A.K. Parida, K.P. Maity: Adv Eng Forum, 16 (2016) 24-32.

Crossreff

L. Özler, A. Inan, C. Özel: Int J Mach Tools Manuf, 41 (2001) 163-172.

Crossreff

T.L. Ginta, A.K.M.N. Amin, M.A. Lajis, A.N.M. Karim, H.C.D.M. Radzi: Eur J Sci Res, 27 (2009) 384-391.

Link

T.L. Ginta, A.K.M.N. Amin, A.N.M. Karim, A.U. Patwari, Modeling and optimization of tool life and surface roughness for end milling titanium alloy Ti - 6Al - 4V using uncoated WC-Co inserts, CUTSE Int. Conf. (2008) 24-27.

S. Ranganathan, T. Senthilvelan: Int J Adv Manuf Technol, 56 (2011) 455-462.

Crossreff

A.K. Parida, K.P. Maity: Int J Eng Res Africa, 24 (2016) 64-70.

Crossreff

A.K. Parida, K.P. Maity: Int J Eng Res Africa, 24 (2016) 57-63.

Crossreff

A.K. Parida, K.P. Maity: Adv Eng Forum, 16 (2016) 16-23.

Crossreff

G. Zhang, Z. Zhang, W. Ming, J. Guo, Y. Huang, X. Shao: Int J Adv Manuf Technol, 70 (2014) 2097-2109.

Crossreff

H. Aouici, H. Bouchelaghem, M.A. Yallese, M. Elbah, B. Fnides: Int J Adv Manuf Technol, 73 (2014) 1775-1788.

Crossreff

A.K. Gupta: Int J Prod Res, 48 (2010) 763-778.

Crossreff

H. Aouici, M.A. Yallese, K. Chaoui, T. Mabrouki, J. F. Rigal: Meas J Int Meas Confed, 45 (2012) 344-353.

Crossreff

R.D. Koyee, U. Heisel, R. Eisseler, S. Schmauder: J Manuf Process, 16 (2014) 451-467.

Crossreff

A.K. Parida: Iran J Sci Technol Trans Mech Eng, 43 (2018) 155-164.

Crossreff

G. Venkatesh, D. Chandrakar: Silicon, 9 (2017) 867-877.

Crossreff

S. Palani, U. Natarajan, M. Chellamalai: Mach Vis Appl, 24 (2013) 19-32.

Crossreff

M. Durairaj, S. Gowri: Procedia Eng, 64 (2013) 878-887.

Crossreff

R. Venkata Rao, V.D. Kalyankar: Scientia Iranica, 20 (2013) 967-974.

Crossreff

I. Asiltürk, S. Neseli, M.A. Ince: Measurement, 78 (2016) 120-128.

Crossreff

S. Selvakumar, R. Ravikumar: Indian J Eng Mater Sci, 21 (2014) 397-408.

Link

M. Hanief, M. F. Wani: Applied Surface Science, 357 (2015) 1573-1577.

Crossreff

A. K. Parida, K. Maity: Measurement, 137 (2019) 375-381.

Crossreff

A.M. Zain, H. Haron, S. Sharif: Expert Syst Appl, 37 (2010) 4650-4659.

Crossreff

Downloads

Published

2020-04-16

How to Cite

Hanief, M., and M. S. Charoo. 2020. “Modeling and Optimization of Flank Wear and Surface Roughness of Monel-400 During Hot Turning Using Artificial Intelligence Techniques”. Metallurgical and Materials Engineering 26 (1):57-69. https://doi.org/10.30544/473.

Issue

Section

Modeling and simulation in metallurgical and materials engineering