Influence of types of nanoparticles, nanoparticles volume concentration and types of cooler metals on the heat transfer in a mini-channel cooler

  • Kamel Chadi Laboratory of Materials and Energy Engineering, University of Mohamed Khider Biskra, Algeria
  • Nourredine Belghar Laboratory of Materials and Energy Engineering, University of Mohamed Khider Biskra, Algeria
  • Belhi Guerira Laboratory of Materials and Energy Engineering, University of Mohamed Khider Biskra, Algeria
  • Zied Driss Laboratory of Electromechanical Systems (LASEM), National School of Engineers of Sfax (ENIS), University of Sfax (US), B.P. 1173, Road Soukra km 3.5, 3038, Sfax, Tunisia
Keywords: heat transfer, nanofluid, mini channels, cooler, fluent

Abstract

In the present work, we have studied the effect of three different types of nanoparticles, nanoparticles volume concentration and types of cooler metals on heat transfer in a mini channel cooler numerically. In these simulations, we have considered the Cu-H2O, the Ag-H2O and the Diamond-H2O with different volume fractions in the range of 0,02%-0,1% and for two types of cooler materials for cooling an electronic component. In these conditions, the inlet velocity is constant for the three different types of nano-fluids. The power of the electronic component is equal to 130 W. The numerical results are developed for a Reynolds number equal to 1414 and a steady-state.

The simulation was performed using commercial software, ANSYS-Fluent 15.0. The obtained results show that the average heat transfer coefficient increases with the increase of the volume fraction of the nanoparticles (Cu, Ag, Diamond) and with the decrease of the temperature of the electronic component. In these conditions, the average heat transfer coefficient is the highest for the H2O–diamond nanofluid compared with the other nanofluids the Cu-H2O and the Ag-H2O. Furthermore, the types of cooler metals have considerable effects on the amelioration of the temperature of the electronic components.

References

N. Y. Abdelazem, A. Ebaid: Indian J Physics, 91 (2017) 1599-1608.

Crossref

M. Kalteh: Applied Mathematical Modelling, 37 (2013) 8600- 8609.

Crossref

R. Nasrin, M. Hasanuzzaman, N. Rahim: International J Numerical Methods for Heat Fluid Flow, 29 (2019) 1920-1946.

Crossref

M. Tawk, Y. Avenas, A. Kedous-Lebouc, D. Charalampous, E. Dubois, J. Chevalet: 13ème édition de la Conférence, Électronique de Puissance du Futur (EPF), Saint-Nazaire, France. Jun (2010).

C Qi, Y L Wan, G Q Wang1 and D T Han: Indian J Physics, 92 (2018) 461-478.

Crossref

S. Gulbanu, M. Kaya, E. Gedik, M. Kayfeci: International J. Numerical Methods for Heat Fluid Flow, 29 (2019) 1432-1447.

Crossref

D. Fernandoa, S. Gaob, S. J. Garrettc: J Physics Fluids, 30 (2018) 082007.

Crossref

H. H. Balla, S. Abdallah, R. Zulkifli, W.M. Faizal and K. Sopian: J Applied sciences, 12 (2012), 1396-1401.

Crossref

N. K. Chavda: International J Research in Engineering and Technology, 04 (2015) 688-696.

Crossref

D. Ciloglu, A. Bolukbasi, H. Cifci: International J Materials Metallurgical Engineering, 9 (2015) 667-670.

Link

N. Kannadasan, K. Ramanathan, S. Suresh: Experimental Thermal and Fluid Science, 42 (2012) 64-70.

Crossref

P. Kangude, D. Bhatt and A. Srivastava: J Physics of fluids, 30 (2018) 057105.

Crossref

I. Gherasim, G. Roy, C.T. Nguyen, D. Vo-Ngoc: International J Thermal Sciences, 50 (2011) 369-377.

Crossref

N.S. Chemloul, M.A. Belmiloud: Revue des Energies Renouvelables, 19 (2016) 397-408.

Link

K. Khanafer, K. Vafai, M. Lightstone: Int J Heat Mass Transfer, 46 (2003) 3639-3653.

Crossref

S.S. Khaleduzzaman, R. Saidur, J. Selvaraj, I.M. Mahbubul, M.R. Sohel, I.M. Shahrul: Advanced Materials Research, 832 (2014) 218-223.

Crossref

K.M. Mostafa, M.A. Reza, I. Ali: Int Communications Heat Mass Transfer, 40(2013) 58-66.

Crossref

E. Belahmadi, R. Bessaih: World J Engineering, 15 (2018) 604-613.

Crossref

H.A. Mohammed, P. Gunnasegaran, N.H. Shuaib: Int Communications Heat Mass Transfer, 38 (2011) 194-201.

Crossref

M. Saeed, M. Kim: Int Journal Heat Mass Transfer, 120 (2018) 671-682.

Crossref

A. Ahad, E. Saeed, A. Taher: Int J Numerical Methods Heat Fluid Flow, 29 (2019) 1506-1525.

Crossref

F. Stéphane, P. Guillaume, P. Catalin, "Nanofluides et transfert de chaleur par convection naturelle", Journée Thématique SFT - Paris, 15 mars 2012.

T. Hung, W. Yan, X. Wang, C. Chang: International J Heat Mass Transfer, 55 (2012) 2559-2570.

Crossref

I. Zakaria, W.A.N.W. Mohamed, A.M.I B. Mamat, R. Saidur W.H. Azmi Rizalman Mamat K.I. Sainan, H. Ismail: Energy Procedia, 79 (2015) 259- 264.

Crossref

D.D. Ma, G.D. Xia, Y.F. Li, Y.T Jia, J. Wang: Energy Conversion Management, 127 (2016) 160-169.

Crossref

G. Xie, Y. Li, F. Zhang, B. Sundén: Numerical Heat Transfer, part A. Applications, 69 (2015) 335-351.

Crossref

Published
2020-04-16
Section
Modeling and simulation in metallurgical and materials engineering