Three-dimensional numerical study of thermal exchanges in different geometry sections of mini-channels using three different nanoparticles

  • Kamel Chadi Laboratory of Materials and Energy Engineering, University of Mohamed Khider Biskra, Algeria
  • Nourredine Belghar Laboratory of Materials and Energy Engineering, University of Mohamed Khider Biskra, Algeria
  • Belhi Guerira Laboratory of Materials and Energy Engineering, University of Mohamed Khider Biskra, Algeria
  • Aissam Messaoudi Abbes Laghrour University of Khenchela, Algeria
Keywords: heat exchange, mini-channels, numerical simulation, nanofluid, fluent

Abstract

In the present work, we have studied the thermal exchanges of different geometry sections of mini-channels of a cooler numerically. Particularly, we have chosen a mini channels cooler copper for cooling an electronic chip IGBT. In our simulation of three-dimensional (3D), we have compared the numerical results for the different forms of the proposed mini-channels and the three different types of nano-fluids by using the Cu-water, the Ag-water, and the Diamond-water with a volume fraction of 0.02%. The numerical results are obtained by choosing a Reynolds number (Re) between 100 and 900 and considering that the flow regime is stationary.

The simulation was performed using commercial software, ANSYS-Fluent 15.0. The results obtained show that the increase of the exchange surface between the walls of the mini channels and the cooling fluid makes increases the heat exchange coefficient and the improvement of the maximum junction temperature of the electronic chip IGBT with the increase of the Reynolds number.

The choice of nanoparticles has considerable effects on improving the heat transfer and the maximum junction temperature of the chip IGBT.

References

V. Farhad, M. Mohadeseh: J Mechanical Engineering, 61 (2015) 669-679.

Crossref

H. Bakhshi, E. Khodabandeh, O. Akbari, D. Toghraie, M. Joshaghani, A. Rahbari: Int J Numerical Methods for Heat and Fluid Flow, 29 (2018) 1680-1698.

Crossref

R. Mohebbi, M. Izadi, A.J. Chamkha: J Physics of Fluids, 29 (2017) 122009.

Crossref

H. Wang, Z. Chen, J. Gao: Applied Thermal Engineering 107 (2016) 870-879.

Crossref

R. Nasrin, M. Hasanuzzaman, N. Rahim: Int J Numerical Methods for Heat and Fluid Flow, 29 (2019) 1920-1946.

Crossref

M. Tawk, Y. Avenas, A. Kedous-Lebouc, D. Charalampous, E. Dubois, J. Chevalet, "Etude d'un système de refroidissement de composants électroniques de puissance par métal liquide," 13ème édition de la Conférence - Électronique de Puissance du Futur (EPF), Saint-Nazaire, France Jun 2010.

C. Qi, Y.L. Wan, G.Q. Wang, D.T. Han: Indian J Physics, 92 (2018) 461-478.

Crossref

X. Wang, Z. Wan, Y. Tang: J Physics of Fluids, 30 (2018) 027102.

Crossref

D.B. Tuckerman, R.F.W. Pease: IEEE Electron Device Letters, EDL, 2 (1981) 126-129.

Crossref

H.Y. Wu, P. Cheng : Int J Heat Mass Transfer, 46 (2003) 2519-2525.

Crossref

C. Nonino, S. Savino, S. Del Giudice: Int J Numerical Methods for Heat Fluid Flow, 25 (2015) 1322-1339.

Crossref

E. Belahmadi, R. bessaih: World J Engineering, 15 (2018) 604-613.

Crossref

S. S. Khaleduzzaman, R Saidur, J. Selvaraj, I.M. SohelMahbubul, M.R. Sohel, I.M Shahrul: Advanced Materials Research, 832 (2014) 218-223.

Crossref

A.A. Abed, W.H. Khalil: Al-Nahrain University, College of Engineering J (NUCEJ), 91(2016) 66-75.

I. Gherasim, G. Roy, C.T. Nguyen, D. Vo-Ngoc: Int J Thermal Sciences, 50 (2011) 369-377.

Crossref

A. Khanlari, A. Sözen, H.İ. Variyenli: Int J Numerical Methods for Heat Fluid Flow, 29 (2018) 1343-1362.

Crossref

S. Kumar, K. S. Pawan: Int J Thermal Sci, 138 (2019) 504-511.

Crossref

M. Bezaatpour, M. Goharkhah: Powder Technology, 344 (2019) 68-78.

Crossref

M. Saeed, M. Kim: Int J Heat Mass Transfer, 120 (2018) 671- 682.

Crossref

R. Ramin, P. Nader, A. Soheil: Int J Thermal Sciences, 132(2018) 76-85.

Crossref

F. Stéphane, P. Guillaume, P. Catalin, "Nanofluides et transfert de chaleur par convection naturelle" Journée Thématique SFT - Paris, 15 mars 2012.

F. O. Hakan, E. Abu-Nada: Int J Heat Fluid Flow, 29 (2008) 1326-1336.

Crossref

K. Khanafer, K. Vafai, M Lightstone: Int J Heat and Mass Transfer, 46(2003) 3639-3653.

Crossref

T-Ch. Hung, W-M. Yan, X-D. Wang, C-Y. Chang: Int J Heat Mass Transfer, 55 (2012) 2559-2570.

Crossref

I. Zakaria, W.A.N.W. Mohamed, A.M.I.B. Mamat, A.M.I Bin, R. Saidur, W.H. Azmi, R. Mamat, K.I. Sainan, H. Ismail: Energy Procedia, 79 (2015) 259-264.

Crossref

K.M. Mostafa, M.A. Reza, I. Ali: Int Commun Heat Mass Transfer, 40 (2013) 58-66.

Crossref

D.D. Ma, G.D. Xia, Y.F. Li, Y.T. Jia, J. Wang: Energy Conversion Management, 127 (2016) 160-169.

Crossref

Published
2020-04-16
Section
Modeling and simulation in metallurgical and materials engineering