The effect of temperature, time of curing and Na2O/SiO2 molar ratio on mechanical and chemical properties of geopolymer cement

Authors

  • Amir Dehnavi Department of Materials Science and Engineering, Faculty of Technology and Engineering, Imam Khomeini International University (IKIU), Qazvin, Iran
  • Masoud Rajabi Department of Materials Science and Engineering, Faculty of Technology and Engineering, Imam Khomeini International University (IKIU), Qazvin, Iran
  • Fatemeh Bavarsiha Department of Materials Science and Engineering, Faculty of Technology and Engineering, Imam Khomeini International University (IKIU), Qazvin, Iran

DOI:

https://doi.org/10.30544/454

Keywords:

geopolymer; meta-kaolin; compressive strength; cement.

Abstract

The geopolymer cement is a suitable alternative material for Portland cement due to their environmental compatibility, low curing temperature, and high strength. In this research, Kaolin was used as a raw material for the construction of a geopolymer cement, while sodium hydroxide was an alkali hydroxide. Kaolin is calcined at 750 °C to obtain meta-kaolin. Geopolymer samples were prepared at various curing temperatures (25, 50, and 75 °C), different curing times (3, 7, 21, 28, and 60 days) and with different activator ratios (0.6-0.9). The thermal analysis of kaolin was done via DTA/TGA. Investigation on the geopolymer cement structure and phases were performed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and magic angle spinning nuclear magnetic resonance (MAS-NMR). Also, the effects of temperature and time of curing and Na2O/SiO2 molar ratio were studied. The results showed that the maximum compressive strength was 115MPa, which obtained at a molar ratio of Na2O/SiO2=0.9, a curing time of 60 days, and a curing temperature of 75 °C. The microstructure of cement was studied using scanning electron microscopy (SEM).

References

G. Cook: Climate Change and the Cement Industry. Assessing emissions and policy responses to carbon prices, Carbon Counts Ltd (2009).

P. Duxson, J.L. Provis, G.C. Lukey, J.S. Van Deventer: Cement and Concrete Research, 37 (2007) 1590-1597.

Crossreff

A. Terzić, L. Pezo, Lj. Miličić, N. Mijatović, Z. Radojević, D. Radulović, Lj. Andrić: Science of Sintering, 51 (2019) 39-56.

Crossreff

P. Chindaprasirt, T. Chareerat, Vute Sirivivatnanon: Cement and concrete composites, 29 (2007) 224-229.

Crossreff

X. Guo, H. Shi, W.A. Dick: Cement and Concrete Composites, 32 (2010) 142-147.

Crossreff

J. Lesko, J. Hudak, Z. Semanova: Science of Sintering, 49 (2017) 159-166.

Crossreff

D.M. Roy: Cement and concrete research, 29 (1999) 249-254.

Crossreff

B.C. McLellan, R.P. Williams, J. Lay, A. Van Riessen, G.D. Corder: Journal of cleaner production, 19 (2011) 1080-1090.

Crossreff

J. Temuujin, A. Van Riessen: Journal of Hazardous Materials, 164 (2009) 634-639.

Crossreff

Z. Yunsheng, S. Wei, L. Zongjin: Applied Clay Science, 47 (2010) 271-275.

Crossreff

S. P. Martinović, M.M. Vlahović, J.B. Majstorović, T.D. Volkov-Husović: Science of Sintering, 48 (2016) 57-70.

Crossreff

T. Bakharev, T: Cement and Concrete Research, 35 (2005) 1233-1246.

Crossreff

J. Zhang, J.L. Provis, D. Feng, J.SJ van Deventer: Journal of Hazardous Materials 157 (2008) 587-598.

Crossreff

T.W: Cheng, J. P. Chiu: Minerals engineering 16 (2003) 205-210.

Crossreff

T. Bakharev: Cement and concrete research, 35 (2005) 658-670.

Crossreff

Van Deventer, Jannie SJ, John L. Provis, and Peter Duxson: Minerals Engineering, 29 (2012) 89-104.

Crossreff

Davidovits, Joseph. "Environmentally driven geopolymer cement applications." In Proceedings of 2002 Geopolymer Conference. Melbourne. Australia. 2002.

S. Alonso, A. Palomo: Materials Letters 47 (2001) 55-62.

Crossreff

Z. Liu, H. Peng, C. Chunsheng: Journal of nanoscience and nanotechnology, 19 (2019) 251-254.

Crossreff

P. Ciccioli, D. Capitani, S. Gualtieri, E. Soragni, G. Belardi, P. Plescia, G. Contini. "Mechano-chemistry of rock materials for the industrial production of new geopolymeric cements." In Factories of the Future, pp. 383-407. Springer, Cham, 2019.

Crossreff

M. Ahdaya, A. Imqam: Journal of Petroleum Science and Engineering, 176 (2019) 934-942.

Crossreff

M.A. Soleimani, R. Naghizadeh, A. R. Mirhabibi, F. Golestanifard: Iranian journal of materials science and engineering, 9 (2012) 43-51.

Link

A. Elimbi, H. K. Tchakoute, D. Njopwouo: Construction and Building Materials, 25 (2011) 2805-2812.

Crossreff

KJD MacKenzie, S. Komphanchai, R. Vagana: Journal of the European Ceramic Society 28 (2008) 177-181.

Crossreff

Davidovits, J.: Geopolymer chemistry and applications. Geopolymer Institute, (2008)

B.R: Ilić, A. A. Mitrović, Lj.R. Miličić: Hemijska industrija, 64 (2010) 351-356.

Crossreff

P.S. Singh, T. Bastow, M. Trigg: Journal of materials science, 40 (2005): 3951-3961.

Crossreff

Davidovits, J.: Geopolymer chemistry and properties. In: Geopolymer 1988, vol. 1, pp. 25-48

Z. Zuhua, Y. Xiao, Z. Huajun, C. Yue: Applied Clay Science, 43 (2009) 218-223.

Crossreff

S. Kramar, V. Ducman: Chemical Industry and Chemical Engineering Quarterly, 21 (2015) 13-22.

Crossreff

X ray meta kaolin powder

Downloads

Published

2020-07-28

How to Cite

Dehnavi, Amir, Masoud Rajabi, and Fatemeh Bavarsiha. 2020. “The Effect of Temperature, Time of Curing and Na2O/SiO2 Molar Ratio on Mechanical and Chemical Properties of Geopolymer Cement”. Metallurgical and Materials Engineering 27 (2):213-26. https://doi.org/10.30544/454.

Issue

Section

Research