Numerical study on characteristics of flow and thermal fields around rotating cylinder

  • Kamel Korib Department of Mechanical Engineering, University Saad Dahlab, Blida 1, Algeria
  • Mohamed ROUDANE Department of Mechanical Engineering, University Saad Dahlab, Blida 1, Algeria
  • Yacine Khelili Department of Mechanical Engineering, University Saad Dahlab, Blida 1, Algeria
Keywords: unsteady flow, rotation rates, circular cylinder, Reynolds number

Abstract

In this paper, a numerical simulation has been performed to study the fluid flow and heat transfer around a rotating circular cylinder over low Reynolds numbers. Here, the Reynolds number is 200, and the values of rotation rates (α) are varied within the range of 0 < α < 6. Two-dimensional and unsteady mass continuity, momentum, and energy equations have been discretized using the finite volume method. SIMPLE algorithm has been applied for solving the pressure linked equations. The effect of rotation rates (α) on fluid flow and heat transfer were investigated numerically. Also, time-averaged (lift and drag coefficients and Nusselt number) results were obtained and compared with the literature data. A good agreement was obtained for both the local and averaged values.

References

M. Zdravkovich, Flow Around Circular Cylinders, vol. 1, Oxford Science Publication, 1997.

Crossref

B. N. Rajani, A. Kandasamy, S. Majumdar: Applied Mathematical Modelling, 33 (2009) 1228-1247.

Crossref

A. Roshko, On the development of turbulent wakes from vortex streets, Technical Report No. NACA TR 1191 (California Institute of Technology, 1953).

S. Kang, H. Choi: Physics of Fluids, 11 (1999) 3312-3320.

Crossref

S. Mittal, B. Kumar: Journal of Fluid Mechanics, 476 (2003) 303-334.

Crossref

H. Nemati, M. Farhady, K. Sedighi, E. Fattahi: Thermal Sci, 3 (2010) 859-878.

Crossref

M.R.H. Nobari, J. Ghazanfarian: Thermal Sci, 49 (2010) 2026-2036.

Crossref

S.B. Paramane, A. Sharma: Int J Heat Mass Transf, 53 (2010) 4672-4683.

Crossref

S.B. Paramane, A. Sharma: Int J Heat Mass Transf, 52 (2009) 3205-3216.

Crossref

F.H. Barnes: J Phys D: Appl Phys, 33 (2000) 141-144.

Crossref

D. Stojkovic, P. Schon, M. Breuer, F. Durst: Phys. Fluids, 14 (2002) 3160-3178.

Crossref

R. El Akoury, M. Braza, R. Perrin, G. Harran, Y. Horau: J Fluid Mech, 607 (2008) 1-11.

Crossref

C. Norberg: J. Fluid Mech, 258 (1994) 287-316.

Crossref

F.M.Mahfouz, H.M. Badr: Int. J. of Heat and Mass Transfer, 43 (2000) 3093-3104.

Crossref

S. Taneda: J Phys Soc Jpn, 45 (1978) 1038 -1043.

Crossref

C.H.K. Williamson: J Fluid Mech, 206 (1989) 579-627.

Crossref

H. Ding, C. Shu, K.S. Yeo, D. Xu: Int J Num Meth Fluids, 53 (2007) 305-332.

Crossref

I. Harimi, M. Saghafian: J Fluids Structures, 28 (2012) 309 -327.

Crossref

A.B. Harichandan, A. Roy: Int J Heat Fluid Flow, 31 (2010) 154-171.

Crossref

K. Lam, W.Q. Gong, R.M.C. So: J Fluids Structures, 24 (2008) 34-57.

Crossref

N. Mahir, Z. Altac: Int J Heat Fluid Flow, 29 (2008) 1309-1318.

Crossref

C. Norberg: Journal of Fluids Mechanics, 258 (1994) 287-316.

Crossref

D. Stojkovic, P. Schon, M. Breuer, F. Durst: Phys Fluids, 15 (2003) 1257-1260.

Crossref

Published
2020-04-16
Section
Modeling and simulation in metallurgical and materials engineering