Recyclability of technology metals from e-waste: case study of In and Ga recovery from magnetic fraction

  • Milisav Ranitović Innovation Center of Faculty of Technology and Metallurgy in Belgrade Ltd.
  • Jovana Djokić Innovation Center of Faculty of Chemistry Ltd.
  • Marija Korać Faculty of Technology and Metallurgy, University of Belgrade
  • Nataša Gajić Innovation Center of Faculty of Technology and Metallurgy in Belgrade Ltd.
  • Stevan Dimitrijević Innovation Center of Faculty of Technology and Metallurgy in Belgrade Ltd.
Keywords: e-waste, magnetic fraction, technology metals, metals distribution, pyrometallurgy

Abstract

This study presents the results of the theoretical assessment and a preliminary experimental investigation of technology metals (TM) recovery from magnetic fraction obtained after mechanical treatment of waste printed circuit boards (WPCBs). Experimental work included physical and chemical characterization, thermodynamic analysis, and pyrometallurgical tests corresponding to secondary lead, copper, and steel metallurgy. Technology metals recyclability and recovery potential were evaluated with respect to their distribution between metal and slag phase (difficult for recovering) versus the dust phase (easy for recovering). According to obtained results, it was determined that high-temperature processing of magnetic fraction in the electric arc furnace promotes volatilization of the TM and their pre-concentration in the filter as a dust product from which they could be valorized using further hydrometallurgical methods.

References

M. Reuter, C. Hudson, A. Van Schaik, K. Heiskanen, C. Meskers, C. Hagelüken, Metal Recycling: Opportunities, Limits, Infrastructure, UNEP, Nairobi, 2013, p. 320.

Link

J. Cui, E. Forssberg: J Hazard Mater 99 (3) (2003) 243-263

Crossreff

N. Hayashi, S. Koyanak, T. Oki: Waste Manage 88 (1) (2019) 337-346

Crossreff

L. Klemettinen, K. Avarmaa, P. Taskinen: ERZMETALL 70(5) (2017) 257-264

Crossreff

K. Mineta, T Okabe: J Phys Chem Solids 66 (2-4) (2005) 318-321

Crossreff

B. Niu, Z. Chen, Z. Xu: J Clean Prod 166 (2017) 512-518

Crossreff

S. Nagy, L. Bokányi, I. Gombkötő, T. Magyar: Arch Metall Mater 62 (2017) 1161-1166 8. Forsen O, Aromaa J, Lundstrom M: Recycling 2 (4) (2017) 19

Crossreff

J. Yang, T. Retegan, C. Ekberg: Hydrometallurgy 137 (2013) 68-77

Crossreff

Y. Zimmermann, C. Niewersch, M. Lenz, Z. Kül, P. Corvini, A. Schäffer, T. Wintgens: Environ Sci Technol 48 (22) (2014) 13412-13418

Crossreff

B. Flerus, L. Billman, K. Bokelmann, R. Stauber, B. Friedrich: In Proceedings of EMC 2019

18. K. Nakajima, O. Takeda, T. Miki, T. Nagasaka: Mater Trans50 (3) (2009) 453-460

Crossreff

T. Hiraki, O. Takeda, K. Nakajima, K. Matsubae, S. Nakamura, T. Nagasaka: Sci Technol Adv Mater, 12 (2011) p. 10.

Crossreff

C. Meskers, C. Hagelüken, S. Salhofer, M. Spitzbart: Proceedings of EMC 2009 p. 527

D. Sukhomlinov, K. Avarmaa, O. Virtanen, P. Taskinen, A. Jokilaakso: Min Proc Ext Met Rev (2019) DOI:10.1080/08827508.2019.1634561

Crossreff

Roine A. (2006) HSC Chemistry® v 6.12, Outotec Research Oy Center, Pori, Finland

Ž. Kamberović, M. Ranitović, M. Korać, N. Jovanović, B. Tomović, N. Gajić: J Sust Metal 4 (2) (2018) 251-259

Crossreff

E. Verhoef, G. Dijkema, M.A. Reuter, Process knowledge, system dynamics and metal ecology. - J Ind Ecol 8 (1-2) (2004) 23-43

Crossreff

Published
2019-10-16
Section
Research