Recyclability of technology metals from e-waste: case study of In and Ga recovery from magnetic fraction


  • Milisav Ranitović Innovation Center of Faculty of Technology and Metallurgy in Belgrade Ltd.
  • Jovana Djokić Innovation Center of Faculty of Chemistry Ltd.
  • Marija Korać Faculty of Technology and Metallurgy, University of Belgrade
  • Nataša Gajić Innovation Center of Faculty of Technology and Metallurgy in Belgrade Ltd.
  • Stevan Dimitrijević Innovation Center of Faculty of Technology and Metallurgy in Belgrade Ltd.



e-waste, magnetic fraction, technology metals, metals distribution, pyrometallurgy


This study presents the results of the theoretical assessment and a preliminary experimental investigation of technology metals (TM) recovery from magnetic fraction obtained after mechanical treatment of waste printed circuit boards (WPCBs). Experimental work included physical and chemical characterization, thermodynamic analysis, and pyrometallurgical tests corresponding to secondary lead, copper, and steel metallurgy. Technology metals recyclability and recovery potential were evaluated with respect to their distribution between metal and slag phase (difficult for recovering) versus the dust phase (easy for recovering). According to obtained results, it was determined that high-temperature processing of magnetic fraction in the electric arc furnace promotes volatilization of the TM and their pre-concentration in the filter as a dust product from which they could be valorized using further hydrometallurgical methods.


M. Reuter, C. Hudson, A. Van Schaik, K. Heiskanen, C. Meskers, C. Hagelüken, Metal Recycling: Opportunities, Limits, Infrastructure, UNEP, Nairobi, 2013, p. 320.


J. Cui, E. Forssberg: J Hazard Mater 99 (3) (2003) 243-263


N. Hayashi, S. Koyanak, T. Oki: Waste Manage 88 (1) (2019) 337-346


L. Klemettinen, K. Avarmaa, P. Taskinen: ERZMETALL 70(5) (2017) 257-264


K. Mineta, T Okabe: J Phys Chem Solids 66 (2-4) (2005) 318-321


B. Niu, Z. Chen, Z. Xu: J Clean Prod 166 (2017) 512-518


S. Nagy, L. Bokányi, I. Gombkötő, T. Magyar: Arch Metall Mater 62 (2017) 1161-1166 8. Forsen O, Aromaa J, Lundstrom M: Recycling 2 (4) (2017) 19


J. Yang, T. Retegan, C. Ekberg: Hydrometallurgy 137 (2013) 68-77


Y. Zimmermann, C. Niewersch, M. Lenz, Z. Kül, P. Corvini, A. Schäffer, T. Wintgens: Environ Sci Technol 48 (22) (2014) 13412-13418


B. Flerus, L. Billman, K. Bokelmann, R. Stauber, B. Friedrich: In Proceedings of EMC 2019

K. Nakajima, O. Takeda, T. Miki, T. Nagasaka: Mater Trans50 (3) (2009) 453-460


T. Hiraki, O. Takeda, K. Nakajima, K. Matsubae, S. Nakamura, T. Nagasaka: Sci Technol Adv Mater, 12 (2011) p. 10.


C. Meskers, C. Hagelüken, S. Salhofer, M. Spitzbart: Proceedings of EMC 2009 p. 527

D. Sukhomlinov, K. Avarmaa, O. Virtanen, P. Taskinen, A. Jokilaakso: Min Proc Ext Met Rev (2019) DOI:10.1080/08827508.2019.1634561


Roine A. (2006) HSC Chemistry® v 6.12, Outotec Research Oy Center, Pori, Finland

Ž. Kamberović, M. Ranitović, M. Korać, N. Jovanović, B. Tomović, N. Gajić: J Sust Metal 4 (2) (2018) 251-259


E. Verhoef, G. Dijkema, M.A. Reuter, Process knowledge, system dynamics and metal ecology. - J Ind Ecol 8 (1-2) (2004) 23-43



How to Cite

Ranitović, Milisav, Jovana Djokić, Marija Korać, Nataša Gajić, and Stevan Dimitrijević. 2019. “Recyclability of Technology Metals from E-Waste: Case Study of In and Ga Recovery from Magnetic Fraction”. Metallurgical and Materials Engineering 25 (3):183-94.