Characterisation of the nanotubular oxide layer formed on the ultrafine-grained titanium
DOI:
https://doi.org/10.30544/402Keywords:
electrochemical anodization, high pressure torsion, nanotubular oxide layer, ultrafine-grained titaniumAbstract
Commercially pure titanium (cpTi) and titanium alloys are metallic implant materials usually used in dentistry and orthopaedics. In order to improve implant properties, Ti-based materials may be surface modified by different procedures. One of the most attractive methods is electrochemical anodization, as a method for obtaining nanotubular oxide layer on the material surface, aiming at improving mechanical, biological and corrosion properties of the metallic biomaterials. In the present study, ultrafine-grained titanium (UFG cpTi) was obtained by high pressure torsion (HPT) under a pressure of 4.1 GPa with a rotational speed of 0.2 rpm, up to 5 rotations at room temperature. In order to form homogeneous nanotubular oxide layer on the UFG cpTi, the electrochemical anodization was performed in phosphoric acid containing 0.5 wt. % of NaF electrolyte during anodizing times of 30, 60 and 90 minutes. The characterisation of thus formed nanotubes was performed using the scanning electron microscopy (SEM), while the surface topography was analysed using the atomic force microscopy (AFM). The results show that the electrochemical anodization process leads to an enhanced roughness of the surface. The mechanical behaviour of the UFG cpTi after the electrochemical anodization process is estimated using the nanoindentation technique. Obtained results show that anodized material has lower value of nanohardness than non-anodized material. Moreover, anodized UFG cpTi has lower modulus of elasticity than non-anodized UFG cpTi and the value is close to those observed in bones.
References
D. Duraccio, F. Mussano, M. Faga: Biomaterials, J Mater Sci, 50 (2015) 4779–4812.
M. Esposito, V. Worthington, P. Thomsen, P. Coulthard: Coch Data Syst Rev, 2003: CD003815.
G. Hille: J Mater, 1 (1966) 373–383.
I. Brånemark, Introduction to osseointegration, Quintessence, Chicago, 1985.
R. Roach: Dent Clin North Am, 51 (2007) 603–627.
R. Valiev, I. Semenova, E. Jakushina, V. Latysh, H. Rack, T. Lowe, J. Petruželka, L. Dluhoš, D. Hrušák, J. Sochová: Mater Sci For, 584-586 (2008) 49-54.
I. Dimić, I. Cvijović-Alagić, A. Hohenwarter, R. Pippan, V. Kojić, J. Bajat, M. Rakin: J Biomed Mater Res B: App Biometer, 106 (2018) 1097-1107.
H. Yilmazer, M. Niinomi, M. Nakai, K. Cho, J. Hieda, Y. Todaka, T. Miyazaki: Mater Sci and Eng C, 33 (2013) 2499–2507.
K. Edalati, Z. Horita: Mater Sci & Eng, A 652 (2016) 325–352.
M. Diamanti, M. Pedeferri: Corr Sci, 49 (2007) 939–948.
L. Wang, M. Jin, Y. Zheng, Y. Guan, X. Lu, J. Luo: Int J Nanomed, 9 (2014) 4421-4435.
D. Barjaktarević, I. Cvijović-Alagić, I. Dimić, V. Đokić, M. Rakin: Metall Mater Eng, 22 (2016) 129-143.
X. Feng, J. Macak, S. Albu, P. Schmuki: Acta Biomater, 4 (2008) 318–323.
L. Taveira, J. Macák, H. Tsuchiya, L. Dick, P. Schmukib: J of Electro Soc, 10 (2005) B405-B410.
N. El-Wassefy, I. Hammouda, A. Habib, G. El-Awady, H. Marzook: Clin Oral Impl Res, 25 (2014) e1-e9.
L. Wang, M. Jin, Y. Zheng, Y. Guan, X. Lu, J. Luo: Inter J Nanomed, 9 (2014) 4421–4435.
A. Fischer-Cripps, Nanoindentation. 2nd ed. New York: Springer; 2004.
K. Raja, M. Misra, K. Paramguru: Electroch Acta, 51 (2005) 154–165.
S. Chatterjee, M. Ginzberg, B. Gersten: In: MRS Proceedings, 2006, p. 951.
D. Gong, C. Grimes, O. Varghese, W. Hu, R. Singh, Z. Chen, E. Dickey: J Mater Res,16 (2001) 3331-3334.
R. Beranek, H. Hildebrand, P. Schmuki: Electrochem Solid-State Lett, 6 (2003) B12.
A. Ghicov, H. Tsuchiya, J. Macak, P. Schmuki: Electroch Commun, 7 (2005) 505–509.
C. Larsson, P. Thomsen, J. Lausmaa, M. Rodahl, B. Kasemo, L. Ericson: Biomater, 15 (1994) 1062 -1074.
M. Ask, U. Rolander, J. Lausmaa, B. Kasemo: J Mater Res, 5 (1990) 1662 – 1667.
A. Novaes, S. Scombatti, R. Martins, K. Pereira, G. Iezzi, A. Piattelli: Braz Dent J, 21 (2010) 471-481.
D. Barjaktarević, M. Rakin, B. Međo, V. Đokić: Proceedings of TEAM 2018, 2018, 117-122, Link.
Y. Bai, Y. Deng, Y. Zheng, Y. Li, R. Zhang, Y. Lv, Q. Zhao, S. Wei: Mater Sci and Eng C, 59 (2016) 565–576.
A. Ossowska, S. Sobieszczyk, M. Supernak, A. Zielinski: Sur & Coat Techn, 258 (2014) 1239-1248.
G. Crawford, N. Chawla, J. Houston: J Mech Behav Biomed Mater, 2(2009) 580 -587.
G. Crawford, N. Chawla, K. Das, S. Bose, A. Bandyopadhyay: Acta Biomater, 3 (2007) 359-367.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Dragana Ranko Barjaktarević, Marko P. Rakin, Veljko R. Djokić

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their published articles online (e.g., in institutional repositories or on their website, social networks like ResearchGate or Academia), as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.