Bisphenol A removal from aqueous solution using fine α-Fe2O3 particles

  • Nataša Z Tomić Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, 11070 Belgrade, Serbia
  • Marija M Vuksanović Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, 11070 Belgrade, Serbia
  • Đorđe Veljović University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11070 Belgrade, Serbia
  • Aleksandar Marinković 2University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11070 Belgrade, Serbia
  • Vesna Radojević University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11070 Belgrade, Serbia
  • Radmila Jančić Heinemann University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11070 Belgrade, Serbia
Keywords: Bisphenol A, adsorption, α-Fe2O3, precipitation method

Abstract

Iron(III) oxide particles (α-Fe2O3) were obtained from ferrous chloride (FeCl3·6H2O) precursor using ammonium hydroxide as a precipitating agent and particles were calcined at 700 °C for 4 h. Morphological and structural properties of the obtained particles were determined using Scanning Electron Microscopy (SEM), BET/BJH analysis, X-ray diffraction (XRD) and Fourier Transform Infra-Red (FT-IR). The image analysis software, Image-Pro Plus 4.0, was used to determine the distribution of the diameter of the obtained particles. Hematite based particles were used as an adsorbent for BPA removal. Adsorption equilibrium was established after 75 min with 14.8% BPA removal efficiency.

References

S. Sakurai, A. Namai, K. Hashimoto, S.I. Ohkoshi: Am Chem Soc, 131 (2009) 18299–18303.

Crossreff

J. Shakhpure, H. Vijayanand, S. Basavaraja, V. Hiremath, A. Venkatraman: Bull Mater Sci, 28 (2005) 713–718.

Crossreff

M. Zhu, Y. Wang, D. Meng, X. Qin, G. Diao: Phys Chem C, 116 (2012) 16276–1628.

Crossreff

A.P. Alivisatos: Sci New Ser, 271 (1996) 933–937.

LINK

V.L. Colvin, M.C. Schlamp, A.P. Alivisatos: Nature, 370 (1994) 354–357.

Crossreff

A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri: Phys E Low-dimens Syst Nanostruct, 101 (2018) 212–219.

Crossreff

J. Xu, L. Wang, Y. F. Zhu: Langmuir, 28 (2012) 8418–8425.

Crossreff

B.S. Rubin: J Steroid Biochem Mol Biol, 127 (2011) 27–34.

Crossreff

J. Bohdziewicz, G. Liszczyk: Ecol Chem Eng S, 20 (2013) 371–379.

Crossreff

C.S. Guo, M. Ge, L. Liu, G.D. Gao, Y.C. Feng, Y.Q. Wang: Sci Technol, 44 (2010) 419–425.

Crossreff

G. Bayramoglu, M.Y. Arica, G. Liman, O. Celikbicak, B. Salih: Chemosphere, 150 (2016) 275–284.

Crossreff

T. Safabakhsh, H. Pourzamani: Int J Env Health Eng, 5 (2016) 25.

Crossreff

A. Bhatnagar, I. Anastopoulos: Chemosphere, 168 (2017) 885-902.

Crossreff

A. Lassoued, M. S. Lassoued, B. Dkhil, S. Ammar, A. Gadri: Physica E Low Dimens Syst Nanostruct, 101 (2018) 212–219.

Crossreff

D. Budimirović, Z. S. Veličković, V. R. Djokić, M. Milosavljević, J. Markovski, S. Lević, A.D. Marinković: Chem Eng Res Des, 119 (2017) 75.

Crossreff

Y. Xu, H. Bai, G. Lu, C. Li, G. Shi: J Am Chem Soc, 130 (2008) 5856–5857.

Crossreff

H. Liu, P. Li, B. Lu, Y. Wei, Y. Sun: Solid State Chem, 182 (2009) 1767–1771.

Crossreff

A. Lassoued, M.S. Lassoued, B. Dkhil, A. Gadri, S. Ammar: J Mol Struct, 1148 (2017) 276–281.

Crossreff

C. Namasivayam, S. Sumithra: Clean Technol Environ Policy, 9 (2007) 215–223.

Crossreff

X. Tang, P. Tang, S. Si, L. Liu: J Serb Chem Soc, 82 (2017) 39–50.

Crossreff

H. S. Park, J. R. Koduru, K.-H. Choo, B. Lee: J Hazard Mater, 286 (2015) 315–324.

Crossreff

J. R. Koduru, L. P. Lingamdinne, J. Singh, K.-H. Choo: Process Saf Environ, 103 (2016) 87–96.

Crossreff

Q. Zhou, Y. Wang, J. Xiao, H. Fan: Synth Met, 212 (2016) 113–122.

Crossreff

Published
2018-12-20
Section
Nanomaterials: Synthesis, Characterization and Applications